Analysis and Optimization of Conformal Patch Excited Wideband DRA of Several Shapes

Frequenz ◽  
2018 ◽  
Vol 72 (5-6) ◽  
pp. 197-208 ◽  
Author(s):  
Pramod Kumar ◽  
Santanu Dwari ◽  
Shailendra Singh ◽  
Ashok Kumar ◽  
N. K. Agrawal ◽  
...  

AbstractIn this paper various shapes of DR antennas excited by common feed have been proposed and successfully implemented for wideband applications. Proposed structures are Hemispherical, Arrow-shaped and Triangular DRA, while common excited feed is inverted trapezoidal conformal patch. These shapes of DR offer significant optimization in several parameters such as impedance bandwidth, peak gain and bandwidth per unit volume of the antenna. By using inverted trapezoidal patch feed mechanism an impedance bandwidth (VSWR<2) of about 63 % for hemispherical shape, 66 % for arrow shape, and 72 % for triangular shape DRA has been achieved with maximum bandwidth per unit volume. Proposed wideband DRAs i. e. triangular, hemispherical, and arrow shapes of DR antennas cover almost complete C-band (4 GHz–8 GHz) frequency spectrum of microwave. The average peak gain within the operating band for hemispherical, arrow, and triangular shape DRA are about 5, 5.4, and 5.5 dB respectively. A comparative analysis of proposed structures for various antenna parameters has been analyzed by HFSS (High-Frequency Structure Simulator) and validated by experimental results.

Author(s):  
Karunesh Srivastava ◽  
Brijesh Mishra ◽  
Rajeev Singh

Abstract A circularly polarized stub-matched inverted L-shaped antenna for C-band applications is presented in this communication. Antenna parameters of inverted L-shape on the radiating patch and slits, notch, square strips and stub on the ground plane and the effect of these are analyzed. The proposed optimized antenna (A5: 0.54λ0 × 0.54λ0 × 0.02λ0 mm3) is selected among antennas (A1 – A5) with 5.1 GHz design frequency after simulation through high-frequency structure simulator (HFSS). Circular polarization is obtained by introducing stub/perturbation on the ground plane. By introducing stub, the highest measured (S11 < − 10 dB) impedance bandwidth of 50.9% (3.48 – 5.86 GHz) is observed amongst the reported and compared bandwidths. Peak gain of 5.32 dBi and 3 dB axial ratio bandwidth of 16.2% (4.71 – 5.54 GHz) is reported in the present work. An antenna is useful in the entire downlink frequency (3.7 – 4.2 GHz) of the C band.


Author(s):  
E. Faghand ◽  
S. Karimian ◽  
E. Mehrshahi ◽  
N. Karimian

Abstract A new simple computational tool is proposed for the synthesis of multi-section coupled-line filters based on combined modified planar circuit method (MPCM) and transmission line method (TLM) analysis, referred to as MPCM-TLM. Due to its fundamentally simple architecture, the presented tool offers significantly faster optimization of coupled-line filters – for exactly the same initial simulation set-up – than other costly commercially-available tools, giving equally reliable results. Validity and accuracy of the proposed tool have been verified through the design of 3rd, 5th, and 7th order coupled-line filters and comparative analysis between results obtained from the proposed approach and the high-frequency structure simulator. A remarkable 99% time reduction in the analysis is recorded in the case of 7th order filter using the proposed tool, for almost identical results to HFSS. Therefore, it can be confidently claimed that the proposed technique can be used as a reliable alternative to existing complex, costly, processor-intensive CAD tools.


A comb shaped microstrip antenna is designed by loading rectangular slots on the patch of the antenna. The antenna resonating at three different frequencies f1 = 5.35 GHz, f2 = 6.19 GHz and f3= 8.15 GHz. The designed antenna is simulated on High Frequency Structure Simulator software [HFSS] and the antenna is fabricated using substrate glass epoxy with dielectric constant 4.4 having dimension of 8x4x0.16 cms. The antenna shows good return loss, bandwidth and VSWR. Experimental results are observed using Vector Analyzer MS2037C/2.


2020 ◽  
Vol 16 (1) ◽  
pp. 15-22
Author(s):  
Ajay Kumar Dwivedi ◽  
Brijesh Mishra ◽  
Vivek Singh ◽  
Pramod Narayan Tripathi ◽  
Ashutosh Kumar Singh

AbstractA novel design of ultra-wideband CPW-fed compact monopole patch antenna is presented in the article. The size of the antenna is 22 × 18 × 1.6 mm and it operates well over an ultra-wideband frequency range 4.86–13.66 GHz (simulated) and 4.93–13.54 GHz (measured) covering C, X and partial Ku band applications. The proposed design consists of a defected ground plane and U-shape radiating patch along with two square shape parasitic patches in order to achieve the ultra-wideband (UWB) operations. The performance matrix is validated through measured results that indicate the wide impedance bandwidth (93.2 %) with maximum gain of 4 dBi with nearly 95 % of maximum radiation efficiency; moreover, the 3D gain pattern manifests approximately omni-directional pattern of the proposed design. The prototype has been modelled using HFSS (High Frequency Structure Simulator-18) by ANSYS, fabricated and tested using vector network analyser E5071C.


2015 ◽  
Vol 8 (3) ◽  
pp. 633-641
Author(s):  
Hamsakutty Vettikalladi ◽  
Muhammad Kamran Saleem ◽  
Majeed A.S. Alkanhal

The design and the results of a single slot coupled substrate integrated waveguide (SIW)-fed membrane antenna and a 1 × 4 array is presented for 94 GHz communication system. The membrane antenna is designed using Ansys high frequency structure simulator and consists of six layers. The microstrip patch antenna placed on the top pyralux substrate layer is excited by means of a longitudinal rectangular slot placed over the SIW structure in the bottom pyralux substrate. The simulated antenna impedance bandwidth is found to be 5 GHz (91.5–96.5 GHz) for both single element and 1 × 4 array. Furthermore, the gain is found to be 7 and 13 dBi for the single element and the 1 × 4 array elements, respectively. The results are verified using Computer Simulation Technology (CST) Microwave Studio and are found to be in good agreement.


2017 ◽  
Vol 9 (7) ◽  
pp. 1427-1432
Author(s):  
Jui-Han Lu ◽  
Zi-Hao Liou

By introducing an L-shaped metal plate connecting with the spiral monopole antenna, a planar compact ultra-high-frequency (UHF) tag antenna for radiofrequency identification system is proposed. With the overall antenna size of only 13 × 9 × 1.6 mm3, the proposed tag antenna provides the measured impedance bandwidth of 12 MHz to comply with Taiwan UHF operating band (922–928 MHz). The measured peak gain and antenna efficiency are approximately −1.1 dBi and 27% for Taiwan UHF band, respectively. Meanwhile, the measured reading distance can approach 250 m. Good tag sensitivity is obtained across the desired frequency band.


2016 ◽  
Vol 9 (3) ◽  
pp. 639-647
Author(s):  
Pinku Ranjan ◽  
Ravi Kumar Gangwar

A novel quarter cylindrical dielectric resonator antenna (q-CDRA) has been introduced by splitting four uniform quarters from a cylinder. q-CDRA has been designed and validated with theoretical analysis. Two and four element q-CDRAs have been proposed in composite forms through Ansoft high-frequency structure simulator simulation software and fabricated for experimental investigation. The input characteristics and radiation patterns of the proposed antennas have been studied through simulation and compared with the measured ones. The |S11| characteristics of the proposed antennas have been compared with each other. The four-element composite q-CDRA has wide impedance bandwidth (|S11| ≤ −10 dB) of 58.15% with monopole-like radiation pattern as compared with other q-CDRAs. The two and four elements q-CDRAs have symmetric monopole-like radiation patterns with linear polarization for whole operating bandwidth (4.5–8.6 GHz). The proposed composite q-CDRAs may find suitable applications in WLAN and WiMAX band.


2013 ◽  
Vol 651 ◽  
pp. 668-672 ◽  
Author(s):  
Dong Yan ◽  
Li Huang ◽  
Ping Wang ◽  
Yu Liu

An H-shaped dual-band microstrip patch antenna is presented which supports two resonance frequencies at 2.5 GHz and 5.01 GHz. Firstly, the design method of antenna size is proposed. Then this antenna is simulated and optimized in High Frequency Structure Simulator (HFSS). Finally, the parameters of this antenna are obtained. Impedance bandwidth for center frequencies of 2.5 GHz and 5.01 GHz are 0.1 GHz (2.45 GHz~2.55 GHz) and 0.14 GHz (4.95 GHz~5.09 GHz), respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Amar Sharma ◽  
Puneet Khanna ◽  
Kshitij Shinghal ◽  
Arun Kumar

A CPW-fed defected substrate microstrip antenna is proposed. The proposed antenna shows wideband applications by choosing suitable defected crown shaped substrate. Defected substrate also reduces the size of an antenna. The radiating patch of proposed antenna is taken in the form of extended U-shape. The space around the radiator is utilized by extending the ground plane on both sides of radiator. Simulation of proposed antenna is done on Ansoft’s High Frequency Structure Simulator (HFSS v. 14). Measured results are in good agreement with simulated results. The prototype is taken with dimensions 36 mm × 42 mm × 1.6 mm that achieves good return loss, constant group delay, and good radiation characteristics within the entire operating band from 4.5 to 13.5 GHz (9.0 GHz) with 100% impedance bandwidth at 9.0 GHz centre frequency. Thus, the proposed antenna is applicable for C and X band applications.


A wideband circularly polarized (CP) planar inverted-F antenna (PIFA) is proposed and designed using reactive impedance surface (RIS) for mobile communication. PIFA with RIS is used for CP radiation, size reduction and wideband of the proposed CP-PIFA. It is a different technique for improving the various performance parameters of the antenna, that is, narrow bandwidth, size reduction, and the axial ratio (AR). The structure of circular polarized PIFA is designed, analyzed, geometrically optimized, and implementation of the antenna to operate at 2.4 GHz WLAN bands. Finally, a proposed CP-PIFA is analyzed and simulated using full 3D electromagnetic high-frequency structure simulator (HFSS). The measured impedance bandwidth of designing an antenna (S11) 10-dB is 1399 MHz (1.542-2.943 GHz) 58.29\%, simulated 3-dB axial ratio bandwidth is 870 MHz (1.639-2.50 GHz) 36.25\%, measured voltage standing wave ratio (VSWR) is 1.02 and the realized gain is 8.1 dB for the 2.4 GHz WLAN bands


Sign in / Sign up

Export Citation Format

Share Document