Membrane antenna array based on substrate integrated waveguide technology for 94 GHz communication systems

2015 ◽  
Vol 8 (3) ◽  
pp. 633-641
Author(s):  
Hamsakutty Vettikalladi ◽  
Muhammad Kamran Saleem ◽  
Majeed A.S. Alkanhal

The design and the results of a single slot coupled substrate integrated waveguide (SIW)-fed membrane antenna and a 1 × 4 array is presented for 94 GHz communication system. The membrane antenna is designed using Ansys high frequency structure simulator and consists of six layers. The microstrip patch antenna placed on the top pyralux substrate layer is excited by means of a longitudinal rectangular slot placed over the SIW structure in the bottom pyralux substrate. The simulated antenna impedance bandwidth is found to be 5 GHz (91.5–96.5 GHz) for both single element and 1 × 4 array. Furthermore, the gain is found to be 7 and 13 dBi for the single element and the 1 × 4 array elements, respectively. The results are verified using Computer Simulation Technology (CST) Microwave Studio and are found to be in good agreement.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hamsakutty Vettikalladi

The design and the results of a single slot coupled substrate integrated waveguide (SIW) fed membrane antenna loaded with a superstrate layer are presented for 94 GHz communication system. The membrane antenna is designed using ANSYS HFSS and consists of 6 layers. The microstrip patch antenna (MPA) placed on the top pyralux substrate layer is excited by means of a longitudinal rectangular slot placed over the SIW structure in the bottom pyralux substrate. The simulated antenna impedance bandwidth is found to be 5 GHz (91.5–96.5 GHz) with a gain of 7 dBi. In order to improve the gain a superstrate layer is added above the membrane antenna. The maximum gain achieved is 14.4 dBi with an efficiency of 77.6% at 94 GHz. The results are verified using CST Microwave Studio and are found to be in good agreement.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Wonsuk Ko

Abstract Sub-terahertz (THz) technology is expected to deliver exceptional data rates for future sixth generation wireless communication systems especially for intelligent communication among devices falling under the Internet of Things (IoT) category. Moving from current 5G millimeter wave (mmW) technology towards THz spectrum will eventually provide unprecedented solutions that will guarantee higher transmission rates and channel capacity for any wireless communication system. With various electronic and wireless components working together to fulfill this promise, high gain antennas having compact profile is one such technology that will aid in achieving sub-THz communication while offering low path and power losses with reliable and fast data transfers. In this context, this work proposes a novel deformed patch antenna operating in the sub-THz spectrum i.e. at 300 GHz band. The proposed antenna is fed via a microstrip line following the proximity coupled feeding technique. Utilizing this technique provides a wide impedance bandwidth with a broadside radiation pattern having minimum side lobe levels of around −12 dB and a directivity of 10–15 dBi for the single and array elements respectively. The proposed design has a small footprint of 1.5 × 1.5 × 0.06 mm3 for the single element while the array element has dimensions of 6 × 5 × 0.06 mm3. Both the designs have been simulated in Computer Simulation Technology-Microwave Studio (CST-MWS) and the results verified via high-frequency structure simulator (HFSS) simulator. The results confirm the viability of the proposed designs to be potential candidates for future sixth generation and IoT based applications.


2013 ◽  
Vol 651 ◽  
pp. 668-672 ◽  
Author(s):  
Dong Yan ◽  
Li Huang ◽  
Ping Wang ◽  
Yu Liu

An H-shaped dual-band microstrip patch antenna is presented which supports two resonance frequencies at 2.5 GHz and 5.01 GHz. Firstly, the design method of antenna size is proposed. Then this antenna is simulated and optimized in High Frequency Structure Simulator (HFSS). Finally, the parameters of this antenna are obtained. Impedance bandwidth for center frequencies of 2.5 GHz and 5.01 GHz are 0.1 GHz (2.45 GHz~2.55 GHz) and 0.14 GHz (4.95 GHz~5.09 GHz), respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Amar Sharma ◽  
Puneet Khanna ◽  
Kshitij Shinghal ◽  
Arun Kumar

A CPW-fed defected substrate microstrip antenna is proposed. The proposed antenna shows wideband applications by choosing suitable defected crown shaped substrate. Defected substrate also reduces the size of an antenna. The radiating patch of proposed antenna is taken in the form of extended U-shape. The space around the radiator is utilized by extending the ground plane on both sides of radiator. Simulation of proposed antenna is done on Ansoft’s High Frequency Structure Simulator (HFSS v. 14). Measured results are in good agreement with simulated results. The prototype is taken with dimensions 36 mm × 42 mm × 1.6 mm that achieves good return loss, constant group delay, and good radiation characteristics within the entire operating band from 4.5 to 13.5 GHz (9.0 GHz) with 100% impedance bandwidth at 9.0 GHz centre frequency. Thus, the proposed antenna is applicable for C and X band applications.


Frequenz ◽  
2018 ◽  
Vol 72 (5-6) ◽  
pp. 197-208 ◽  
Author(s):  
Pramod Kumar ◽  
Santanu Dwari ◽  
Shailendra Singh ◽  
Ashok Kumar ◽  
N. K. Agrawal ◽  
...  

AbstractIn this paper various shapes of DR antennas excited by common feed have been proposed and successfully implemented for wideband applications. Proposed structures are Hemispherical, Arrow-shaped and Triangular DRA, while common excited feed is inverted trapezoidal conformal patch. These shapes of DR offer significant optimization in several parameters such as impedance bandwidth, peak gain and bandwidth per unit volume of the antenna. By using inverted trapezoidal patch feed mechanism an impedance bandwidth (VSWR<2) of about 63 % for hemispherical shape, 66 % for arrow shape, and 72 % for triangular shape DRA has been achieved with maximum bandwidth per unit volume. Proposed wideband DRAs i. e. triangular, hemispherical, and arrow shapes of DR antennas cover almost complete C-band (4 GHz–8 GHz) frequency spectrum of microwave. The average peak gain within the operating band for hemispherical, arrow, and triangular shape DRA are about 5, 5.4, and 5.5 dB respectively. A comparative analysis of proposed structures for various antenna parameters has been analyzed by HFSS (High-Frequency Structure Simulator) and validated by experimental results.


2020 ◽  
Vol 16 (1) ◽  
pp. 15-22
Author(s):  
Ajay Kumar Dwivedi ◽  
Brijesh Mishra ◽  
Vivek Singh ◽  
Pramod Narayan Tripathi ◽  
Ashutosh Kumar Singh

AbstractA novel design of ultra-wideband CPW-fed compact monopole patch antenna is presented in the article. The size of the antenna is 22 × 18 × 1.6 mm and it operates well over an ultra-wideband frequency range 4.86–13.66 GHz (simulated) and 4.93–13.54 GHz (measured) covering C, X and partial Ku band applications. The proposed design consists of a defected ground plane and U-shape radiating patch along with two square shape parasitic patches in order to achieve the ultra-wideband (UWB) operations. The performance matrix is validated through measured results that indicate the wide impedance bandwidth (93.2 %) with maximum gain of 4 dBi with nearly 95 % of maximum radiation efficiency; moreover, the 3D gain pattern manifests approximately omni-directional pattern of the proposed design. The prototype has been modelled using HFSS (High Frequency Structure Simulator-18) by ANSYS, fabricated and tested using vector network analyser E5071C.


2020 ◽  
Vol 10 (13) ◽  
pp. 4546
Author(s):  
Tarek S. Mneesy ◽  
Radwa K. Hamad ◽  
Amira I. Zaki ◽  
Wael A. E. Ali

This paper presented the design and implementation of a 60 GHz single element monopole antenna as well as a two-element array made of two 60 GHz monopole antennas. The proposed antenna array was used for 5G applications with radiation characteristics that conformed to the requirements of wireless communication systems. The proposed single element was designed and optimized to work at 60 GHz with a bandwidth of 6.6 GHz (57.2–63.8 GHz) and a maximum gain of 11.6 dB. The design was optimized by double T-shaped structures that were added in the rectangular slots, as well as two external stubs in order to achieve a highly directed radiation pattern. Moreover, ring and circular slots were made in the partial ground plane at an optimized distance as a defected ground structure (DGS) to improve the impedance bandwidth in the desired band. The two-element array was fed by a feed network, thus improving both the impedance bandwidth and gain. The single element and array were fabricated, and the measured and simulated results mimicked each other in both return loss and antenna gain.


2014 ◽  
Vol 573 ◽  
pp. 394-399
Author(s):  
R. Manikandan ◽  
P.K. Jawahar

In recent years, the demand for compact handheld communication devices has grown significantly. For device miniaturization antenna size is to be reduced. Micro strip and PIFA have been used for past few years. Since it has low profile geometry it can be embedded into devices. This project is to develop a Quad band small size Planar Inverted F Antenna (PIFA) for the operation in modern multi-band mobile transceiver system. Various techniques for analysis and design of such antenna investigated in this project. The design curve is used to design Quad band Planar inverted F Antenna to operate at the 900, 1800, 2100 and 3500 MHz bands. Since High Frequency Structure Simulator (HFSS) simulation result agrees well with the theoretical predictions, this project also designed through HFSS. An antenna designed at the four desired band and optimized to adjust the four resonance frequencies using HFSS simulation. The substrate FR4 (εr=4.4 & tanδ = 0.02) are in good agreement with the simulation result. Further bandwidth enhancements by making defects in the substrate at particular area were need of much reflection.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Aiting Wu ◽  
Zhonghai Zhang ◽  
Boran Guan

The shape of the tuning stub of the wide slot printed antenna is an important factor which affects the antenna’s performances. In this paper, a new design and optimization method of wideband printed slot antenna using a shape blending algorithm is presented. The proposed antenna consists of a wide rectangular slot and a tuning stub, whose profile is formed by the shape blending outcome from a pie and a diamond shape. The method is used to design an ultra-wideband antenna. The impact on the impedance bandwidth through the antenna geometry change with the different shape blending results has been investigated and analyzed. To verify the proposed design, the antenna prototype was designed, fabricated, and measured. The measured results are compared with the simulation and show good agreement.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Puneet Khanna ◽  
Amar Sharma ◽  
Kshitij Shinghal ◽  
Arun Kumar

A coplanar waveguide- (CPW-) fed compact wideband defected structure shaped microstrip antenna is proposed for wireless applications. Defected structure is produced by cutting theUshape antenna in the form of two-sided T shape. The proposed antenna consists of two-sidedTshape strip as compared to usual monopole patch antenna for minimizing the height of the antenna. The large space around the radiator is fully utilized as the ground is on the same plane as of radiator. Microstrip line feed is used to excite the proposed antenna placed on an FR4 substrate (dielectric constantεr=4.4). The antenna is practically fabricated and simulated. Simulated results of the proposed antenna have been obtained by using Ansoft High-Frequency Structure Simulator (HFSS) software. These results are compared with measured results by using network analyzer. Measured result shows good agreement with the simulated results. It is observed that the proposed antenna shows a wideband from 2.96 GHz to 7.95 GHz with three bands atf1=3.23 GHz,f2=4.93 GHz, andf3=7.04 GHz.


Sign in / Sign up

Export Citation Format

Share Document