Design a Compact UWB Monopole Antenna with Triple Band-Notched Characteristics Using EBG Structures

Frequenz ◽  
2018 ◽  
Vol 72 (11-12) ◽  
pp. 479-487 ◽  
Author(s):  
F. Mouhouche ◽  
A. Azrar ◽  
M. Dehmas ◽  
K. Djafri

Abstract In this paper, a compact ultra-wideband (UWB) monopole antenna with triple band-notched characteristics is presented. These triple band rejections are produced by inserting the Complementary Co-directional Split-Ring Resonator (CC.SRR) on the radiating element for WiMAX/WLAN (3.4–3.95 GHz/5.35–5.9 GHz) and Electromagnetic Band Gap (EBG) structure in the vicinity of transmission line for X-band satellite communications (6.7–7.7 GHz). The proposed antenna with a total size of 18×20.9×1.63 mm3 has been constructed and tested. An equivalent RLC circuit model is proposed and investigated. The simulated and measured results show that the proposed antenna has an impedance bandwidth (VSWR<2) extanding from 3.05 GHz to 14 GHz with triple notched bands of [3.3–3.9 GHz], [5.25–5.86 GHz] and [6.7–7.7 GHz]. The triple band notched characteristics and the good radiation patterns make the proposed antenna a good candidate for the UWB applications.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. Mchbal ◽  
N. Amar Touhami ◽  
H. Elftouh ◽  
A. Dkiouak

A compact ultra-wideband (UWB) multiple input-multiple output (MIMO) antenna with high isolation is designed for UWB applications. The proposed MIMO antenna consists of two identical monopole antenna elements. To enhance the impedance matching, three slots are formed on the ground plane. The arc structure as well as the semicircle with an open-end slot is employed on the radiating elements the fact which helps to extend the impedance bandwidth of the monopole antenna from 3.1 up to 10.6 GHz, which corresponds to the UWB band. A ground branch decoupling structure is introduced between the two elements to reduce the mutual coupling. Simulation and measurement results show a bandwidth range from 3.1 to 11.12 GHz with |S11_|<−15 dB, |S21_|<−20 dB, and ECC < 0.002.


2021 ◽  
Author(s):  
BUDHADEB MAITY ◽  
SISIR KUMAR NAYAK

Abstract This article presents a structure of coplanar waveguide (CPW)-fed star-shaped monopole antenna (SSMA) with a pair of quarter-circular-slit (QCS) and partly-hexagonal-ring-slit (PHRS) defected ground structure. By inserting a pair of QCS and PHRS on the rectangular ground plane, an excellent impedance bandwidth is achieved i.e., 139 % (from 2.2--12.21 GHz). The dimension of the SSMA is about 0.286λ l ×0.216λ l mm 2 , where λ l is the wavelength in free space at the lowest operating frequency i.e, 2.2 GHz. The transmission line model (TLM) of the SSMA is presented and it shows the antenna behavior based on the effect of each element. It is observed that the characteristics of the TLM model are close to the simulation result using the CST simulator. From the results, it is observed that the proposed ultra-wideband (UWB) antenna close to omnidirectional radiation patterns and suitable for UWB Applications.


Author(s):  
Madan Kumar Sharma ◽  
Mithilesh Kumar ◽  
J.P. Saini

This article describes how a compact, low profile Ultra-wideband (UWB) monopole antenna with a defected ground structure is designed and demonstrated experimentally. The design and experimentation activities have been carried out with the help of a CST Microwave studio tool. The UWB characteristics of the proposed antenna are achieved with a modification of the ground structure of the referenced antenna with novel L shaped defected ground structure (DGS). Both antennas are fabricated on the same substrate with the dimensions of 28.3 x 24 mm2. The comparative analysis of the results for both antennas clearly indicate that the proposed UWB monopole antenna enhanced the impedance bandwidth from 3.7 GHz – 14.9 GHz without DGS and to 3.4 GHz – 20 GHz with DGS. The enhanced bandwidth, constant group delay and good radiation characteristics of the proposed antenna have identified it as a good candidate for portable UWB applications.


In this paper, a microstrip line fed butterfly shaped monopole UWB antenna is proposed for wireless applications. The wings of butterfly shaped monopole antenna is formed by adding two rotated ellipse of same radius symmetrically placed about the centre of feeding line. The proposed antenna exhibits impedance bandwidth of 3.1-11.9 GHz which covers the whole ultra-wideband frequency range from 3.1-10.6 GHz. The performance is characterised in terms of VSWR, radiation patterns, impedance bandwidth and gain. The proposed antenna can be used for various UWB applications like high performance in noisy environment, low transmission power, cost effectiveness and large channel capacity


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 796 ◽  
Author(s):  
Samir Salem Al-Bawri ◽  
Hui Hwang Goh ◽  
Md Shabiul Islam ◽  
Hin Yong Wong ◽  
Mohd Faizal Jamlos ◽  
...  

A printed compact monopole antenna based on a single negative (SNG) metamaterial is proposed for ultra-wideband (UWB) applications. A low-profile, key-shaped structure forms the radiating monopole and is loaded with metamaterial unit cells with negative permittivity and more than 1.5 GHz bandwidth of near-zero refractive index (NZRI) property. The antenna offers a wide bandwidth from 3.08 to 14.1 GHz and an average gain of 4.54 dBi, with a peak gain of 6.12 dBi; this is in contrast to the poor performance when metamaterial is not used. Moreover, the maximum obtained radiation efficiency is 97%. A reasonable agreement between simulation and experiments is realized, demonstrating that the proposed antenna can operate over a wide bandwidth with symmetric split-ring resonator (SSRR) metamaterial structures and compact size of 14.5 × 22 mm2 (0.148 λ0 × 0.226 λ0) with respect to the lowest operating frequency.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 202 ◽  
Author(s):  
Xiaobo Zhang ◽  
Saeed Ur Rahman ◽  
Qunsheng Cao ◽  
Ignacio Gil ◽  
Muhammad Irshad khan

In this paper, a wideband antenna was designed for super-wideband (SWB) applications. The proposed antenna was fed with a rectangular tapered microstrip feed line, which operated over a SWB frequency range (1.42 GHz to 50 GHz). The antenna was implemented at a compact size with electrical dimensions of 0.16 λ × 0.27 λ × 0.0047 λ mm3, where λ was with respect to the lowest resonance frequency. The proposed antenna prototype was fabricated on a F4B substrate, which had a permittivity of 2.65 and 1 mm thickness. The SWB antenna exhibited an impedance bandwidth of 189% and a bandwidth ratio of 35.2:1. Additionally, the proposed antenna design exhibited three band notch characteristics that were necessary to eradicate interference from WLAN, WiMAX, and X bands in the SWB range. One notch was achieved by etching an elliptical split ring resonator (ESRR) in the radiator and the other two notches were achieved by placing rectangular split ring resonators close to the signal line. The first notch was tuned by incorporating a varactor diode into the ESRR. The prototype was experimentally validated with, with notch and without notch characteristics for SWB applications. The experimental results showed good agreement with simulated results.


2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
D. Khedrouche ◽  
T. Bougoutaia ◽  
A. Hocini

AbstractIn this paper, a miniaturized microstrip patch antenna using a negative index metamaterial with modified split-ring resonator (SRR) unit cells is proposed for ultra-wideband (UWB) applications. The new design of metamaterial based microstrip patch antenna has been optimized to provide an improved bandwidth and multiple frequency operations. All the antenna performance parameters are presented in response-graphs. Also it is mentioned that the physical dimensions of the metamaterial based patch antenna are very small, which is convenient to modern communication. A 130 % bandwidth, covering the frequency band of 2.9–13.5 GHz, (for return loss less than or equal –10 dB) is achieved, which allow the antenna to operate in the Federal Communication Commission (FCC) band. In addition, the antenna has a good radiation pattern in the ultra-wide band spectrum, and it is nearly omnidirectional.


Circuit World ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 257-267 ◽  
Author(s):  
Jayshri Sharad Kulkarni ◽  
Raju Seenivasan

Purpose This paper aims to present a triple-band monopole antenna design of 0.2-mm thickness with an overall dimension of 21 × 8 mm2 for wireless local area network (WLAN)/worldwide interoperability for microwave access (WiMAX) multiple input and multiple output (MIMO) applications in the laptop computer. Design/methodology/approach It comprises three monopole radiating elements, namely, strip AD (inverted C), strip EG (inverted J) and strip FI (inverted U) along with two rectangular open-end tuning stubs, namely, “m” and “n” of size 1.5 × 0.9 mm2 and 1.8 × 0.9 mm2, respectively. The proposed structure is compact, cost-effective and easy to integrate inside the laptop computers. Findings This structure excites three WLAN (2.4/5.2/5.8 GHz) and three WiMAX (2.3/3.3/5.5 GHz) bands. The proposed antenna array elucidates that it has measured −10dB impedance bandwidth of 11.86 per cent (2.22-2.50) GHz in a lower band (f_l), 6.83 per cent (3.25-3.48) GHz in medium band (f_m) and 16.84 per cent (5.00-5.92) GHz in upper band (f_u). The measured gain and radiation efficiency are above 3.64dBi and 75 per cent, respectively, and isolation better than −20dB. The envelope correlation coefficient (ECC) is less than 0.004. The simulated and measured results are in good concurrence, which confirms the applicability of the proposed antenna array for MIMO applications in the laptop computer. Originality/value The proposed antenna is designed without using vias, reactive elements and matching circuits for excitation of WLAN/WiMAX bands in the laptop computers. The design also does not require any additional ground for mounting the antenna. Further, the antenna array, formed by using the same antenna design, does not need additional isolating elements and is designed in such a way that the system ground itself acts as an isolating element. The proposed antenna has a low profile and is ultra-thin, cost-effective and easy to manufacture and can be easily embedded inside the next-generation laptop computers.


Sign in / Sign up

Export Citation Format

Share Document