Miniaturized bandpass filter using coupled lines for wireless applications

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abbas Mohamadinia ◽  
Farzin Shama ◽  
Mohammad Amir Sattari

Abstract In this paper, a bandpass filter (BPF) has been designed using bent and coupled-line structure. The design process of the filter to achieve a BPF with good characteristics is completely explained. Therefore the LC equivalent circuit of The BPF is presented as the analytical description. The proposed filter can pass frequencies between 2.2 and 3.6 GHz with an insertion loss <0.4 dB, which is suitable for wireless applications. The fractional bandwidths (FBW) of the filter is about 48%. Some characteristics such as small size, low insertion loss, high return loss wide upper stopband bandwidth, and good suppression level in stopband are among the advantages of this study to be mentioned. Finally, the presented filter was fabricated, and the measured results have a proper agreement with the simulation results.

2020 ◽  
Vol 20 (1) ◽  
pp. 73-79
Author(s):  
Girdhari Chaudhary ◽  
Yongchae Jeong

This paper presents a design of a transmissive-type, low insertion loss (IL) negative group delay (NGD) circuit with a reconfigurable NGD. The proposed circuit consists of a series transmission lines (TLs) and shunt short-circuited coupled lines where an isolation port is terminated with a parasitic compensated PIN diode. Analytical design equations are derived to obtain the circuit parameters for the predefined NGD and IL. The low IL can be achieved because of the very high characteristic impedance of the short-circuited coupled lines. The TL terminated with a PIN diode is used to achieve the constant center frequency of reconfigurable NGD circuit. For experimental validation, the NGD circuit is designed and fabricated at a center frequency (<i>f</i><sub>0</sub>) of 2.14 GHz. In the measurement, the NGD varies from -0.5 ns to -2 ns with an IL variation of 2.08 to 3.60 dB at <i>f</i><sub>0</sub> = 2.14 GHz. The NGD bandwidth (bandwidth of GD less than 0 ns) varies from 90 MHz to 50 MHz. The minimum input/output return losses are higher than 10 dB for the overall tuning range.


Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 61-71 ◽  
Author(s):  
Shiva Khani ◽  
Mohammad Danaie ◽  
Pejman Rezaei ◽  
Ali Shahzadi

AbstractIn this paper, a microstrip dual-band bandpass filter (DBBPF) based on an octagonal loop resonator (OLR), tapered resonators and open bended stubs (OBSs) is designed and analysed. The proposed structure produces two passbands with the centre frequencies of 3.65 and 5.67 GHz. The marked advantages of the proposed filter are as follows: Two centre frequencies can be individually tuned. The bandwidth of the upper passband can also be controlled. Furthermore, the DBBPF benefits from an ultra-wide upper stopband from 5.9 up to 21 GHz with an attenuation level of higher than 20 dB and a small size of 0.21 λg × 0.26 λg, where λg is the guided wavelength at 3.65 GHz. The designed filter is horizontally and vertically symmetrical leading to a reciprocal S matrix. Other remarkable specifications of the proposed filter are the insertion loss < 0.62 dB, the return loss > 20.2 dB and sharp response. To provide an analytical description, the LC equivalent circuits of initial and main resonators are presented. Acceptable similarity between simulated and measured results verifies the design process.


2018 ◽  
Vol 4 ◽  
pp. 119-124
Author(s):  
Ram Krishna Maharjan

This research focuses a new microstrip twin-interdigital type bandpass filter based on stepped impedance resonator (SIR) structure. The proposed structure consists of two slightly different interdigital capacitances within a single SIR resonator that behaves as a bandpass filter (BPF) of center frequency 4.3 GHz with 700 MHz bandwidth at 3 dB pass band. This design is not only subjected to size reduction, but also low pass-band insertion loss and high return loss as well. The Sonnet software tool has been used to design and simulate the microstrip BPF. The fabricated BPF was measured using the Agilent 8510C vector network analyzer (VNA) and achieved the insertion loss of 0.5 dB and the return loss of 26 dB. The measured results were compared with those simulated results which were very close to each other. The fabricated BPF can be used for Cband Applications.


Frequenz ◽  
2014 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Karimi ◽  
M. Yazdani ◽  
H. Siahkamari ◽  
A. Lalbakhsh

AbstractA novel lowpass filter with wide stopband and sharp skirt characteristics is proposed. To obtain the applicable lowpass filter, several cells of coupled T-shaped resonator, U-shape and dumbbell-shaped resonators are connected in series. The proposed filter has low insertion loss, high return loss in the passband and wide stopband. The transition band is from 3.18 to 3.29 GHz with −3 and −20 dB, respectively. Results of the fabricated filter exhibit a roll-off and relative stopband bandwidth of 217 and 137%, respectively. Measurement and simulation results show good agreement.


2018 ◽  
Vol 15 (2) ◽  
pp. 24
Author(s):  
Abbas Rezaei ◽  
Leila Noori

In this paper, a compact microstrip bandpass filter is designed using two open loop resonators. In order to obtain a tunable bandpass response with low insertion loss, two stubs are loaded inside them. The design process is based on obtaining the input admittance. Then, using the input admittance, a method is presented to control the resonance frequency and miniaturization simultaneously. The obtained insertion loss and the return loss at the resonance frequency are 0.1 dB and 19.7 dB respectively. To verify the design method, the proposed filter is fabricated and measured. The measured results are in good agreement with the simulated results.


2016 ◽  
Vol 16 (1) ◽  
pp. 11
Author(s):  
Arief Budi Santiko ◽  
Yahya Syukri Amrullah ◽  
Yuyu Wahyu ◽  
Muhammad Ilham Maulana ◽  
Bambang Setia

In this paper, the design of microstrip BPF (Bandpass Filter) for WiMAX (Worldwide Interoperability for Microwave Access) application has been presented. The frequency band allocations for BWA (Broadband Wireless Access) in Indonesia are 2.3; 3.3 and 5.8 GHz. This microtrip BPF is designed using parallel coupled line in compact form and it has spesific parameter, i.e. 3.35 GHz center frequency, 400 MHz bandwidth, VSWR ≤ 2, -3 dB insertion loss and matching impedance between two port is 50 Ω. The Advanced Design System (ADS) software has been used during simulation and optimization. The simulation results show that return loss S11 and insertion loss S21 are -15.31 dB and -2.2 dB at 3.35 GHz respectively. For the design verification, the prototype of the proposed design wasfabricated and measured.The results of the fabrication approach of simulation results, which have return loss value S11and insertion loss S21 of the proposed microstrip filter are -18.20 dB and -2.91 dB at 3.35 GHz respectively. The result shows that the proposed design can be implemented forWiMAX communication system applications


2018 ◽  
Vol 15 (2) ◽  
pp. 124
Author(s):  
Abbas Rezaei ◽  
Leila Noori

In this paper, a compact microstrip bandpass filter is designed using two open loop resonators. In order to obtain a tunable bandpass response with low insertion loss, two stubs are loaded inside them. The design process is based on obtaining the input admittance. Then, using the input admittance, a method is presented to control the resonance frequency and miniaturization simultaneously. The obtained insertion loss and the return loss at the resonance frequency are 0.1 dB and 19.7 dB respectively. To verify the design method, the proposed filter is fabricated and measured. The measured results are in good agreement with the simulated results.


2018 ◽  
Vol 10 (10) ◽  
pp. 1113-1117
Author(s):  
Xiao-Le Bo ◽  
Yong-Hong Zhang ◽  
Xiao-Kun Li ◽  
Yang Yang ◽  
Yin Tian ◽  
...  

AbstractA compact dual-wideband (DWB) bandpass filter utilizing open-shorted coupled lines (OSCL) is proposed in this paper. The introduction of the folded structure not only reduces the overall size but also contribute to the split of the transmission zero (TZ), which improves the selectivity effectively. Six transmission poles and five TZs are realized utilizing the shorted-circuit stub and OSCL. The characteristic of the flexible adjustment method of TZs guarantees an independently wide adjustable range of the bandwidth. For demonstration, a DWB filter (3 dB bandwidth 120 and 28%, respectively) is designed and fabricated. The filter is compact and has the characteristics of extraordinary wide bandwidth, low insertion loss, as well as high selectivity.


2019 ◽  
Vol 4 (7) ◽  
pp. 28-30
Author(s):  
William Johnson ◽  
Cavin Roger Nunes ◽  
Savio Sebastian Dias ◽  
Siddhi Suresh Parab ◽  
Varsha Shantaram Hatkar

In this paper, a dual band microstrip bandpass filter has been proposed utilizing three edge coupled resonators, interdigital stubs and DGS technique. To enhance the coupling degree, two interdigital coupled feed lines are employed in this filter. The suppressing cell consists of stepped impedance ladder type resonators, which provides a wide stopband. The proposed suppressing cell has clear advantages like low insertion loss in the passband and suitable roll off. The frequency response of the filter looks like a standard dual band band-pass filter. The filter exhibits a dual passband with resonant frequencies at 2.2GHz and 3.45GHz covers LTE1 and LTE22 bands.


Sign in / Sign up

Export Citation Format

Share Document