scholarly journals Cummingtonite-bearing volcanic rocks: first evidence in the Central Slovak Volcanic Field

2018 ◽  
Vol 69 (4) ◽  
pp. 335-346
Author(s):  
Katarína Šarinová ◽  
Samuel Rybár

Abstract Within the framework of reinterpretation of the depositional evolution of the Komjatice depression, presence of cummingtonite in weakly lithified sediment has been detected. The sediment is formed by volcanic lithoclasts and phenocrysts with a small admixture of non-volcanic grains. The different mineral composition and various degrees of alteration of volcanic lithoclasts, together with structural features point to epiclastic origin. Therefore, the studied samples can be described as volcanic paraconglomerate and sandstone. The cummingtonite is found in rusty coloured volcanic lithoclasts and in the heavy fraction. Cummingtonite-bearing volcanic rocks have not been described so far from the Slovak Neogene volcanic fields. Therefore its presence in the studied samples represents the first indication of such volcanic rock in Slovakia. The aim of the article is to invoke interest for finding these volcanic rocks in situ.

2021 ◽  
Author(s):  
Benoit Deffontaines ◽  
Kuo-Jen Chang ◽  
Samuel Magalhaes ◽  
Gérardo Fortunato

<p>Volcanic areas in the World are often difficult to map especially in a structural point of view as (1) fault planes are generally covered and filled by more recent lava flows and (2) volcanic rocks have very few tectonic striations. Kuei-Shan Tao (11km from Ilan Plain – NE Taiwan) is a volcanic island, located at the soutwestern tip of the South Okinawa trough (SWOT). Two incompatible geological maps had been already published both lacking faults and structural features (Hsu, 1963 and Chiu et al., 2010). We propose herein not only to up-date the Kuei-Shan Tao geological map with our high resolution dataset, but also to create the Kuei-Shan Tao structural scheme in order to better understand its geological and tectonic history.</p><p>Consequently, we first acquired aerial photographs from our UAS survey and get our new UAS high resolution DTM (HR UAS-DTM hereafter) with a ground resolution <10cm processed through classical photogrammetric methods. Taking into account common sense geomorphic and structural interpretation and reasoning deduced form our HR UAS-DTM, and the outcropping lithologies situated all along the shoreline, we have up-dated the Kuei-Shan Tao geological mapping and its major structures. To conclude, the lithologies (andesitic lava flows and pyroclastic falls) and the new structural scheme lead us to propose a scenario for both the construction as well as the dismantling of Kuei-Shan Tao which are keys for both geology and geodynamics of the SWOT.</p>


2018 ◽  
Vol 366 ◽  
pp. 112-119 ◽  
Author(s):  
Jesús Alcalá-Reygosa ◽  
José Luis Arce ◽  
Irene Schimmelpfennig ◽  
Esperanza Muñoz Salinas ◽  
Miguel Castillo Rodríguez ◽  
...  

EKSPLORIUM ◽  
2020 ◽  
Vol 41 (2) ◽  
pp. 73
Author(s):  
Windi Anarta Draniswari ◽  
Sekar Indah Tri Kusuma ◽  
Tyto Baskara Adimedha ◽  
I Gde Sukadana

ABSTRAK Anomali radiometri telah ditemukan di area Sungai Amplas pada bongkah batuan vulkanik. Nilai yang terukur dari spektrometer gama adalah 787 ppm eU dan 223 ppm eTh. Penemuan ini menarik untuk pengembangan eksplorasi. Studi lebih lanjut diperlukan untuk mengetahui karekteristik batuan pembawa mineral radioaktif dari sampel in-situ. Penelitian ini bertujuan untuk mengetahui karakteristik petrologi dan geokimia batuan vulkanik Ampalas sebagai studi awal untuk mengetahui proses akumulasi mineral radioaktif pada batuan vulkanik Ampalas. Metodologi yang digunakan meliputi pengamatan lapangan, pengambilan sampel batuan, analisis petrografi dan X-Ray Fluorescence (XRF). Batuan vulkanik ampalas tersusun atas ponolit, foidit, dan foid-syenit. Tekstur batuannya terdiri dari porfiritik, aliran, rim piroksen, zoning, pseudo-leusit, korosi, inklusi mafik, dan sieve. Karakteristik geokimia menunjukkan alkalinitas tinggi dan indikasi pengayaan mineral radioaktif yang tersebar dalam batuan. Proses magmatis yang berperan dalam pembentukan batuan vulkanik adalah fraksionasi kristal (fraksionasi leusit dan alkali felspar), asimilasi kerak kontinen, dan pencampuran magma. Interaksi antara magma dan kerak menyebabkan diferensiasi magma berkelanjutan yang menghasilkan akumulasi uranium dan torium lebih tinggi.ABSTRACT Anomalous radiometry has been found in Ampalas River Area on volcanic rock boulder. The values measured from gamma spectrometer are 787 ppm eU and 223 ppm eTh. This discovery is promising for exploration development. Further study need to figure the radioactive mineral bearing rock characteristic from in-situ samples. The research aim is to determine the petrology and geochemical characteristics of Ampalas volcanic rocks as preliminary study to find radioactive mineral accumulation process of Ampalas volcanic rocks. The methodologies are field observation, rock sampling, petrography, and X-Ray fluorescence (XRF) analyses. The Ampalas volcanic rocks consist of phonolite, phoidite, and phoid syenite. Their textures are porphyritic, flow, pyroxene rim, zoning, pseudo-leucite, corrosion, mafic inclusions, and sieve. The geochemical characteristics show high alkalinity and radioactive mineral enrichment disseminating on rock. The magmatic processes which play a significant role in radioactive mineral-bearing rocks formation are crystal fractionations (leucite and alkaline feldspar fractionations), continental crust assimilation, and magma mixing. Long interaction between magma and crust creates advanced magma differentiation causing higher uranium and thorium accumulation.  


1989 ◽  
Vol 26 (2) ◽  
pp. 296-304 ◽  
Author(s):  
Julie E. Gales ◽  
Ben A. van der Pluijm ◽  
Rob Van der Voo

Paleomagnetic sampling of the Lawrenceton Formation of the Silurian Botwood Group in northeastern Newfoundland was combined with detailed structural mapping of the area in order to determine the deformation history and make adequate structural corrections to the paleomagnetic data.Structural analysis indicates that the Lawrenceton Formation experienced at least two folding events: (i) a regional northeast–southwest-trending, Siluro-Devonian folding episode that produced a well-developed axial-plane cleavage; and (ii) an episode of local north-trending folding. Bedding – regional cleavage relationships indicate that the latter event is older than the regional folding.Thermal demagnetization of the Lawrenceton Formation yielded univectorial southerly and shallow directions (in situ). A fold test on an early mesoscale fold indicates that the magnetization of the Botwood postdates this folding event. However, our results, combined with an earlier paleomagnetic study of nearby Lawrenceton Formation rocks, demonstrate that the magnetization predates the regional folding. Therefore, we conclude that the magnetization occurred subsequent to the local folding but prior to the period of regional folding.While a tectonic origin for local folding cannot be entirely excluded, the subaerial nature of these volcanics, the isolated occurrence of these folds, and the absence of similar north-trending folds in other areas of eastern Notre Dame Bay suggest a syndepositional origin. Consequently, the magnetization may be nearly primary. Our study yields a characteristic direction of D = 175°, I = +43°, with a paleopole (16°N, 131 °E) that plots near the mid-Silurian track of the North American apparent polar wander path. This result is consistent with an early origin for the magnetization and supports the notion that the Central Mobile Belt of Newfoundland was adjacent to the North American craton, in its present-day position, since the Silurian.


2019 ◽  
Vol 7 (1) ◽  
pp. 191-197 ◽  
Author(s):  
Janine Börker ◽  
Jens Hartmann ◽  
Gibran Romero-Mujalli ◽  
Gaojun Li

Abstract. Basalt weathering is one of many relevant processes balancing the global carbon cycle via land–ocean alkalinity fluxes. The CO2 consumption by weathering can be calculated using alkalinity and is often scaled with runoff and/or temperature. Here, it is tested if the surface age distribution of a volcanic system derived by geological maps is a useful proxy for changes in alkalinity production with time. A linear relationship between temperature normalized alkalinity fluxes and the Holocene area fraction of a volcanic field was identified using information from 33 basalt volcanic fields, with an r2=0.93. This relationship is interpreted as an aging function and suggests that fluxes from Holocene areas are ∼10 times higher than those from old inactive volcanic fields. However, the cause for the decrease with time is probably a combination of effects, including a decrease in alkalinity production from material in the shallow critical zone as well as a decline in hydrothermal activity and magmatic CO2 contribution. The addition of fresh reactive material on top of the critical zone has an effect in young active volcanic settings which should be accounted for, too. A comparison with global models suggests that global alkalinity fluxes considering Holocene basalt areas are ∼60 % higher than the average from these models imply. The contribution of Holocene areas to the global basalt alkalinity fluxes is today however only ∼5 %, because identified, mapped Holocene basalt areas cover only ∼1 % of the existing basalt areas. The large trap basalt proportion on the global basalt areas today reduces the relevance of the aging effect. However, the aging effect might be a relevant process during periods of globally intensive volcanic activity, which remains to be tested.


The pre-optic nucleus and hypothalamic tracts of intact and hypophysectomized specimens of the European eel Anguilla anguilla L. have been studied in situ and by optical and electron microscopy. The in situ technique reveals a hitherto unsuspected degree of segregation of the neurosecretory axons which form up to five discrete tracts having separate origins and following distinct paths before converging, at the level of the anterior margin of the pituitary, to form a median tract. The structure of the pre-optic neurons, as revealed by several different techniques, is described and it is shown that their synthetic poles, identified by a prominent cap of endoplasmic reticulum, are precisely orientated towards the third ventricle and are separated from it by, at most, two or three layers of ependymal cells. Electron microscopy shows that the secretory products lie mainly in the axonal ends of the cells though in Bouin-fixed, wax-embedded material the entire perikaryon stains with neurosecretory dyes and this, and their proximity to the third ventricle, gives the impression that they secrete into the latter, as well as centripetally. This may well be so, but from the work described below it seems more likely that these neurons receive nutrients, or stimuli, or both, from the third ventricle. Two types of pre-optic neurons, separable by structural features as well as by the size of the elementary granules they contain have been identified; these probably give rise to two of the fibre types identified in the neurohypophysis of the eel by Knowles & Vollrath. Aggregations of neurosecretion, common in the fish pre-optic nucleus, and also, much rarer, colloid vesicles, are described and discussed.


Geophysics ◽  
1980 ◽  
Vol 45 (1) ◽  
pp. 18-31 ◽  
Author(s):  
R. A. Gibb ◽  
M. D. Thomas

Gravity measurements were made in two gold mine shafts sunk in the Archean Yellowknife greenstone belt to determine the in‐situ densities of basic volcanic rocks of the Kam formation, Yellowknife supergroup. Thirteen stations were occupied between the surface and a depth of 608 m at an average interval of about 50 m in the C shaft of Giant Yellowknife Mines Limited, and 14 stations were occupied between the surface and a depth of 1598 m at an average interval of about 120 m in the Robertson shaft of Con mine, Cominco Limited. Densities were computed using the terminology of borehole gravimetry with appropriate corrections for surface terrain and underground voids such as shafts, drifts, and stopes. Weighted mean in‐situ densities of [Formula: see text] (36 to 608 m depth) and [Formula: see text] (surface to 1598 m depth) were obtained from the gravity measurements for the Giant and Robertson sections, respectively; these values compare with mean densities of 2.82 and [Formula: see text] obtained from rock samples collected at the underground gravity stations. Sheared specimens and massive specimens collected at both underground and surface gravity stations have mean densities of 2.80 and [Formula: see text], respectively. Unaltered surface samples collected at stratigraphic intervals of about 150 m throughout the entire volcanic sequence have a mean density of [Formula: see text]. Core samples obtained from holes drilled from the bottom of C shaft extend the vertical density profile for the Giant section from a depth of 608 to 1416 m; the mean density of these samples is [Formula: see text]. The lower bulk densities obtained from the mine shaft experiments reflect in part the high proportion of sheared rocks and in part the presence of lower‐density members of the Kam formation (andesite, dacite, tuff, breccia, and agglomerate) in the vicinity of the shafts, as opposed to purely massive basaltic rocks. A density of [Formula: see text] based on the proportion of low‐ and high‐density rocks in the volcanic belt is considered to be more representative of the Kam formation as a whole.


Sign in / Sign up

Export Citation Format

Share Document