Effects of waste eggshells and SiC addition in the synthesis of aluminum hybrid green metal matrix composite

2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Shashi Prakash Dwivedi ◽  
Satpal Sharma ◽  
Raghvendra Kumar Mishra

AbstractThe mechanical behavior, physical behavior, microstructural characteristics, and corrosion behavior of AA2014/silicon carbide (SiC)/carbonized eggshell hybrid green metal matrix composites (MMCs) were investigated. Twenty-five samples of hybrid composite with different combinations of SiC and carbonized eggshell particles in AA2014 matrix alloy were prepared. Microstructure presents that the reinforcement particles (SiC and eggshells) are uniformly distributed in the matrix AA2014 alloy. Transmission electron microscope image shows proper wettability between SiC, carbonized eggshell, and AA2014 aluminum alloy. The tensile strength and the fatigue strength for the composites containing 2.5 wt.% SiC up to 7.5 wt.% carbonized eggshell were observed to be higher than that of the other selected composites. The hardness values for the composites containing 12.5 wt.% SiC and 2.5 wt.% carbonized eggshell were in all cases higher than that of the other composites. The results show that toughness decreases with the increase in the weight ratio of SiC and carbonized eggshell in the composites. The results reveal that the sample of AA2014/2.5% SiC/12.5% carbonized eggshell shows minimum corrosion rate among all the selected samples. Density, porosity, and overall cost of hybrid metal matrix composites were also calculated to see the effects of carbonized eggshell and SiC addition in AA2014 matrix alloy.

2000 ◽  
Vol 6 (5) ◽  
pp. 452-462 ◽  
Author(s):  
Julie M. Cairney ◽  
Robert D. Smith ◽  
Paul R. Munroe

AbstractTransmission electron microscope samples of two types of metal matrix composites were prepared using both traditional thinning methods and the more novel focused ion beam miller. Electropolishing methods were able to produce, very rapidly, thin foils where the matrix was electron transparent, but the ceramic reinforcement particles remained unthinned. Thus, it was not possible in these foils to study either the matrix-reinforcement interface or the microstructure of the reinforcement particles themselves. In contrast, both phases in the composites prepared using the focused ion beam miller thinned uniformly. The interfaces in these materials were clearly visible and the ceramic reinforcement was electron transparent. However, microstructural artifacts associated with ion beam damage were also observed. The extent of these artifacts and methods of minimizing their effect were dependent on both the materials and the milling conditions used.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1827-1832
Author(s):  
Moon Sik Han ◽  
Jung Il Song

Evaluation of fracture toughness of short fiber reinforced metal matrix composites (MMCs) becomes important for the application as structural materials. Therefore, in this study static and dynamic fracture toughness of MMCs manufactured by squeeze casting process were investigated. A number of MMCs have been tested with various matrix alloys, volume fractions, and specifically types of reinforcements. It was found that static and dynamic fracture toughness of metal matrix composites was remarkably decreased by the addition of ceramic reinforcements. Dynamic fracture toughness slightly decreased compared with static fracture toughness because of the effect of dynamic velocity under impact loading. The toughness of ceramic reinforced MMCs is controlled by a complexity interaction between the matrix alloy and reinforcement. Important properties which influence toughness include the type of reinforcement (its physical form, size), volume fraction and combination of reinforcement, and the matrix alloy. And notch fracture toughness of MMCs for simple evaluation was also discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
R. Karthigeyan ◽  
G. Ranganath

This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.


2015 ◽  
Vol 813-814 ◽  
pp. 195-202 ◽  
Author(s):  
T. Lokesh ◽  
U.S. Mallikarjun

Abstract. In recent years, Aluminium alloy based metal matrix composites (MMC) are gaining wide spread acceptance in several aerospace and automobile applications. These composites possess excellent wear resistance in addition to other superior mechanical properties such as strength, modulus and hardness when compared with conventional alloys. The hybrid composites are new generation of composites containing more than one type, shape or sizes of reinforcements giving superior combined properties of reinforcements and the matrix. In the present work, Al6061 has been used as matrix material and the reinforcing materials selected were SiC and Graphite particulates of 10 to 30µm size. Composites Al6061-Gr (2- 8 wt. %), Al6061-SiC (2 -10wt. %) and Hybrid composites with Al6061 matrix alloy containing 3wt% graphite and varying composition of 2-10wt% SiCp were prepared by stir casting technique. The cast matrix alloy and its composites have been subjected to solutionizing treatment at a temperature of 530 ± 20C for 6 hours, followed by ageing at a temperature of 175 ± 20C for 6 hours. The mechanical properties of as cast and T6 heat treated composites have been evaluated as per ASTM standards and compared. Addition of Graphite particulates into the Al6061 matrix improved the strength and ductility of the composites. Significant improvement in tensile strength and hardness was noticed as the wt. % of SiCp increases in Al6061-SiC composites. Addition of Graphite into Al6061-SiC further improved the strength and ductility of hybrid composites. The heat treatment process had the profound effect in improving the mechanical properties of the studied composites. The microstructural studies revealed the uniform distribution of SiC and Gr particles in the matrix system.


Author(s):  
D Charles

Metal matrix composites (MMCs) offer considerable potential for providing lightweight components exhibiting high strength, high stiffness, good wear resistance and improved elevated temperature performance in comparison to the matrix alloy. Consequently they are applicable to a wide range of aerospace products. The potential offered by this class of materials has resulted in considerable effort being expanded to address the challenges posed by the design*** and manufacture of aerospace components from these materials. These efforts have culminated in the successful design, manufacture and test of representative aircraft components from metal matrix composites.


Author(s):  
I. W. Hall ◽  
A. P. Diwanji

Carbon fiber reinforced metal matrix composites (MMC's) are an attractive class of materials for automotive and aerospace structural applications because of their high strength and stiffness to weight ratios and their low coefficients of thermal expansion. Successful development of these new materials demands a thorough understanding of the structure/property/processing relationships and, in particular, a detailed understanding of the fiber/matrix interface since this region strongly influences the final mechanical properties of the system. This interface is affected by many factors including the manufacturing method, heat treatment, matrix alloy composition and wettability of the fibers but, since it is a region which is typically much less than lμm wide, it is inaccessible to direct detailed observation by any means other than transmission electron microscopy.


2007 ◽  
Vol 23 ◽  
pp. 51-58 ◽  
Author(s):  
E.M. Ruiz-Navas ◽  
M.L. Delgado ◽  
José M. Torralba

Consolidation of aluminium alloys by sintering present a main problem: the oxide layer that cover aluminium particles. Some alternatives are studied in this work as solution to the oxide layer problem during the sintering of series 2xxx aluminium alloys. One of these solutions is related to the addition of tin traces, and the other is the addition of a second alloy. Moreover, aluminium metal matrix composites are characterized by excellent properties as combination of properties which comes from the matrix and from the reinforcement. In the first part of this work is analyzed the influence of trace additions, and the last part of this study is focused to the analysis of one aluminium matrix composite as the influence of several quantities of reinforcement.


1995 ◽  
Vol 398 ◽  
Author(s):  
J. R. Heffelfinger ◽  
R. R. Kieschke ◽  
C. B. Carter

ABSTRACTThe interfacial reaction between Al2O3 (alumina) and a β-Ti alloy has been characterized by transmission electron microscopy, scanning electron microscopy, and X-ray energy-dispersive spectroscopy. Diffusion bonding single-crystal alumina and a β-Ti alloy was found to produce three interfacial regions: a region of intermetallics (Tl3Al and TiAl) located near the alumina interface, an α-Ti region, and a β-Ti region (rich in Mo, the β-phase stabilizer). Of the intermetallics to form, Ti3Al was found to form first and have an aligned, planar interface with the alumina. TiAl formed second and was found to separate grains of Ti3Al and the alumina. Reaction products observed in the diffusion-bonded alumina/β-Ti couples are compared with those observed in metal-matrix composites (MMCs), where a β-Ti alloy matrix is reinforced with alumina fibers. Different coatings used in MMCs are investigated for their ability to prevent the reaction between the matrix and fibers.


Author(s):  
Gilles L'Espérance ◽  
David J. Lloyd

From the very beginning of the development of metal matrix composites, (MMC's), electron microscopy has played a major role in their development. Thus, analytical transmission electron microscopy, (ATEM), has been used to characterize and study: the reinforcements in MMC's, interfacial reactions and products that can occur at the interface between the matrix and the reinforcement and the detailed matrix microstructure, particularly the dislocation and grain structure and the precipitation/constituent phases. In this presentation, we will review and discuss the contribution of ATEM to each of these points and describe how it provided necessary information in the design and use of these materials. The presentation will mainly discuss Al-based composites although work from Ti and Mg-based composites will also be presented.


Author(s):  
M H Loretto

In general the microstructural assessment of advanced materials can be satisfactorily assessed using optical and scanning electron microscopy together with X-ray diffraction. Transmission electron microscopy (TEM) is used only when the scale and nature of the information which can be obtained from TEM is appropriate. The aim of the present article is to highlight some examples of the unique role that TEM has played in the field of structural materials. Four areas will be discussed: metal matrix composites; precipitation in Al-Li based alloys; rapid solidification; intermetallics.In the field of metal-matrix composites one of the most important aspects is nature of the bonding and interaction between the reinforcement and the matrix, and this is an area where the spatial resolution of analytical TEM is required in order to characterise any interaction. The recent work on Ti6A14V/TiC and Ti24All INb/TiC composites has illustrated this very clearly. Even after heat treatments of 50h at 1100°C the TiC appears to be unaffected as assessed by both optical and scanning electron microscopy. Only when TEM is used is it possible to see that there has been any interaction.


Sign in / Sign up

Export Citation Format

Share Document