scholarly journals Calcined sodium silicate as an efficient and benign heterogeneous catalyst for the transesterification of natural lecithin to L-α-glycerophosphocholine

2019 ◽  
Vol 8 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Bin Li ◽  
Hongya Li ◽  
Xiaoli Zhang ◽  
Pengjuan Fan ◽  
Lei Liu ◽  
...  

Abstract Calcined sodium silicate could serve as an efficient and benign heterogeneous catalyst for the production of L-α-glycerophosphocholine from natural lecithin. The catalytic transesterification of natural lecithin by calcined sodium silicate proceeded to almost 100% conversion under the following conditions: sodium silicate amount of 6 wt%, reaction temperature of 65°C, lecithin concentration of 10.5 mmol/l, stirring intensity of 300 rpm, reaction time of 120 min. In addition, this catalyst could be separated completely by simple centrifugation and retained high activity after three re-uses. Compared to the previously reported catalysts, calcined sodium silicate, with the significantly important characteristics of non-toxicity and easy excretion from the human body, was beneficial to the benign production of L-α-glycerophosphocholine and its security as well as application in food and medicine fields.

2014 ◽  
Vol 1008-1009 ◽  
pp. 338-341
Author(s):  
Yu Xiu Zhang ◽  
Cheng Zhi Wang ◽  
Yong Li Zhang ◽  
Zhang Wei Li

CuO/γ-Al2O3 catalyst was used to deal with the waste leachate in CWAO technology of, and the SEM and TEM characterization showed: active component in the surface of the carrier distribution is uniform; In CWAO process, six factors, based on the CODCr removal rate and turbidity removal rate, the biggest impact factor is reaction temperature, and the influence factors of the top three were reaction temperature, catalyst dosage and reaction time. The influence factors of those in the bottom three are influent water pH, oxygen partial pressure, stirring intensity, and three factors of influence on the strength is close. Optimizing operation process, in order: reaction temperature of 200 °C, catalyst dosage of 1.5 g, oxygen partial pressure of 2.0 MPa, stirring intensity 800 rpm, influent water pH of 7.0, the reaction time of 70 min.


2011 ◽  
Vol 17 (2) ◽  
pp. 117-124 ◽  
Author(s):  
B. Singh ◽  
Faizal Bux ◽  
Y.C. Sharma

Biodiesel was developed by transesterification of Madhuca indica oil by homogeneous and heterogeneous catalysis. KOH and CaO were taken as homogeneous and heterogeneous catalyst respectively. It was found that the homogeneous catalyst (KOH) took 1.0 h of reaction time, 6:1 methanol to oil molar ratio, 0.75 wt% of catalyst amount, 55?0.5?C reaction temperature for completion of the reaction. The heterogeneous catalyst (CaO) was found to give optimum yield in 2.5 h of reaction time at 8:1 methanol to oil molar ratio, 2.5 wt% of catalyst amount, at 65?0.5?C. A high yield (95-97%) and conversion (>96.5%) was obtained from both the catalysts. CaO was found to leach to some extent in the reactants and a biodiesel conversion of 27-28% was observed as a result of leaching.


2019 ◽  
Vol 8 (4) ◽  
pp. 5555-5558

Biodiesel is renewable and environmental friendly fuel which has the potential to obtain considerable performance of engine. The aim of this work is to optimize the transesterification process for production of biodiesel using Taguchi method. In this experimental work, the Karanja oil transesterification is done to produce biodiesel using Al2O3 as a heterogeneous catalyst, using five parameters and five levels. Orthogonal array obtained by Minitab to analyze the interaction effect by using Taguchi method for the transesterification reaction. The parameters such as molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction time and stirring speed are effect on biodiesel yield. Effect of these parameters is investigated on small scale. Experimental yield obtained at optimal conditions i.e. are 20:1 molar ratio of methanol to oil, addition of 3% Al2O3 catalyst, reaction temperature 65ºC, reaction time 60 min and 600 rpm stirring speed is 80%.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Fei Chang ◽  
Chen Yan ◽  
Quan Zhou

A new copper-based supramolecular (β-cyclodextrins, β-CD) catalyst was synthesized and used for transesterification of Xanthium sibiricum Patr oil to biodiesel. This catalyst exhibited high activity (88.63% FAME yield) in transesterification under the ratio of methanol-oil: 40 : 1; catalyst dosage: 8 wt.%; reaction temperature: 120°C; and reaction time: 9 h. The XRD, SEM, TEM, XPS, and BET characterization results showed that Cu-β-CD catalyst was amorphous and had clear mesoporous structure (17.2 nm) as compared with the native β-CD. This phenomenon is attributed to the coordination of Cu and β-CD.


Biodiesel is renewable and environmental friendly fuel which has the capable to gain comparable engine performance. In this experimental study, Karanja oil synthesized by using Transesterification process. Transesterification of Karanja oil to biodiesel using SiO2 as a heterogeneous catalyst is studied using five different parameters and levels each. Minitab is used to fix the orthogonal arrays and Taguchi method is used to analyze the interaction effect for the transesterification reaction. The five different parameters responsible for biodiesel yield are molar ratio of methanol to oil, catalyst concentration, reaction temperature, reaction time and stirring speed. Effect of these parameters has studied on small scale. The biodiesel yield obtained experimentally at optimum conditions are 20% methanol to oil molar ratio, 3% SiO2 catalyst addition, 65ºC reaction temperature, 180 min reaction time and 500 rpm stirring speed is 77%.


2011 ◽  
Vol 366 ◽  
pp. 366-369
Author(s):  
Feng Gao ◽  
Rong Fu ◽  
Ming Yang Qian ◽  
Zhu Min Wang ◽  
Xiang Zhang

Response surface methodology was used to optimize the soaking Mg leaching ratio from the boron slurry screened by 25 fractional factorial design. Five effective factors such as H2SO4 concentrations, reaction time, reaction temperature and stir velocity were tested by using 25 fractional factorial design criterion and three effective factors H2SO4 concentrations, reaction time and reaction temperature showed significant effect(P2SO4 concentrations of 0.29mol/l, reaction time of 90 min and reaction temperature of 50°C. Three runs of additional confirmation experiments were conducted. The mixture magnesium leaching value was 58.20%.


2014 ◽  
Vol 915-916 ◽  
pp. 713-716
Author(s):  
Qing Zhang ◽  
Jing Tian ◽  
Zhi Qi Cao ◽  
Ru Xia Xu ◽  
Zhen Zhen Sun ◽  
...  

In this investigation, Schiff bases aluminum complex was synthesized and used as the initiator in the polymerization of D,L-lactide. The aluminum complex was characterized by infrared spectroscopy (IR), and nuclear magnetic resonance spectroscopy (NMR). The influences of different factors, including reaction time, reaction temperature, and the ratio of D, L-lactide/Al3+ on the synthesis of polylactide were described. The results showed that Schiff bases aluminum complex could be successfully applied in the ring opening polymerization. The optimum condition of the ring opening polymerization of D,L-lactide, which included D,L-lactide/Al3+ (mol/mol) ratio of 250, reaction temperature of 120 °C, and reaction time of 16 hours.


2011 ◽  
Vol 17 (3) ◽  
pp. 323-331 ◽  
Author(s):  
Jiancheng Zhou ◽  
Wu Dongfang ◽  
Birong Zhang ◽  
Yali Guo

A series of single-metal carbonates and Pb-Zn mixed-metal carbonates were prepared as catalysts for alcoholysis of urea with 1,2-propylene glycol (PG) for the synthesis of propylene carbonate (PC). The mixed carbonates all show much better catalytic activities than the single carbonates, arising from a strong synergistic effect between the two crystalline phases, hydrozincite and lead carbonate. The mixed carbonate with Pb/Zn=1:2 gives the highest yield of PC, followed by the mixed carbonate with Pb/Zn=1:3. Furthermore, Taguchi method was used to optimize the synthetic process for improving the yield of PC. It is shown that the reaction temperature is the most significant factor affecting the yield of PC, followed by the reaction time, and that the optimal reaction conditions are the reaction time at 5 hours, the reaction temperature at 180 oC and the catalyst amount at 1.8 wt%, resulting in the highest PC yield of 96.3%.


2010 ◽  
Vol 65 (8) ◽  
pp. 1038-1044 ◽  
Author(s):  
Kazumichi Yanagisawa ◽  
Jae-Hyen Kim ◽  
Chisato Sakata ◽  
Ayumu Onda ◽  
Eri Sasabe ◽  
...  

Calcium-deficient hydroxyapatite (CDHA) prepared by the coprecipitation method was solidified by the hydrothermal hot-pressing technique, and compacts of CDHA with high bulk density beyond 80% were obtained at 200 ℃. Each reaction parameter, viz. reaction temperature, pressure, and time, was systematically changed from the standard conditions to investigate its effects on density, Vickers hardness, and Ca/P ratio of the compacts obtained. The reaction temperature and pressure had a large effect on densification, but not the reaction time because the densification proceeds in a short time. The densification by hydrothermal hot-pressing involved dissolution and precipitation of the starting CDHA powder, so that the Ca/P ratio changed from 1.52 of the starting powders to 1.61 of the compact obtained by hydrothermal hot-pressing at 200 ℃ and 35 MPa for 24 h with the addition of 10 wt.-% water


Sign in / Sign up

Export Citation Format

Share Document