scholarly journals Compound Channel’s Cross-section Shape Effects on the Kinetic Energy and Momentum Correction Coefficients

2020 ◽  
Vol 67 (1-4) ◽  
pp. 55-71
Author(s):  
Elham Ghanbari-Adivi

Abstract Since accurate estimation of the flow kinetic energy (α) and momentum (β) is not easily possible in compound channels, determining their accurate correction coefficients is an important task. This paper has used the “flood channel facility (FCF)” data and the “conveyance estimate system (CES)” model (which is 1D, but considers a term related to the secondary flow) to study how the floodplain width and the main channel wall slope and asymmetry affect the values of α and β. Results have shown that their maximum values at the highest floodplain width are, respectively, 1.36 and 1.13 times of those at the lowest case; an increase in the slope increased their maximum values by 1.05 and 1.01 times, respectively. The mean of error values showed that the CES model estimated the values α and β more accurately than the flow discharge. The maximum differences between the estimated and experimental values were 12.14% for α and 4.3% for β; for the flow discharge, it was 24.4%.

2019 ◽  
Author(s):  
Danilo Carmona ◽  
Pablo Jaque ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Peroxides play a central role in many chemical and biological pro- cesses such as the Fenton reaction. The relevance of these compounds lies in the low stability of the O–O bond which upon dissociation results in radical species able to initiate various chemical or biological processes. In this work, a set of 64 DFT functional-basis set combinations has been validated in terms of their capability to describe bond dissociation energies (BDE) for the O–O bond in a database of 14 ROOH peroxides for which experimental values ofBDE are available. Moreover, the electronic contributions to the BDE were obtained for four of the peroxides and the anion H2O2− at the CBS limit at CCSD(T) level with Dunning’s basis sets up to triple–ζ quality provid- ing a reference value for the hydrogen peroxide anion as a model. Almost all the functionals considered here yielded mean absolute deviations around 5.0 kcal mol−1. The smallest values were observed for the ωB97 family and the Minnesota M11 functional with a marked basis set dependence. Despite the mean deviation, order relations among BDE experimental values of peroxides were also considered. The ωB97 family was able to reproduce the relations correctly whereas other functionals presented a marked dependence on the chemical nature of the R group. Interestingly, M11 functional did not show a very good agreement with the established order despite its good performance in the mean error. The obtained results support the use of similar validation strategies for proper prediction of BDE or other molecular properties by DF Tmethods in subsequent related studies.</p></div></div></div>


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
C Quercioli ◽  
G A Carta ◽  
G Cevenini ◽  
G Messina ◽  
N Nante ◽  
...  

Abstract Background Careful scheduling of elective surgery Operating Rooms (ORs) is crucial for their efficient use, to avoid low/over utilization and staff overtime. Accurate estimation of procedures duration is essential to improve ORs scheduling. Therefore analysis of historical data about surgical times is fundamental to ORs management. We analyzed the effect, in a real setting, of an ORs scheduling model based on estimated optimum surgical time in improving ORs efficiency and decreasing the risk of overtime. Methods We studied all the 2014-2019 elective surgery sessions (3,758 sessions, 12,449 interventions) of a district general hospital in Siena's Province, Italy. The hospital had3 ORs open 5 days/week 08:00-14:00. Surgery specialties were general surgery, orthopedics, gynecology and urology. Based on a pilot study conducted in 2016, which estimated a 5 times greater risk of having an OR overtime for sessions with a surgical time (incision-suture)&gt;200 minutes, from 2017 all the ORs were scheduled using a maximum surgical time of 200 minutes calculated summing the mean surgical times for intervention and surgeon (obtained from 2014-2016 data). We carried out multivariate logistic regression to calculate the probability of ORs overtime (of 15 and 30 minutes) for the periods 2014-2016 and 2017-2019adjusting for raw ORs utilization. Results The 2017-2019 risk of an OR overtime of 15 minutes decreased by 25% compared to the 2014-2016 period (OR = 0.75, 95%CI=0.618-0.902, p = 0.003); the risk of a OR overtime of 30 minutes decreased by 33% (OR = 0.67, 95%CI= 0.543-0.831, p &lt; 0.001). Mean raw OR utilization increase from 62% to 66% (p &lt; 0.001). Mean number of interventions per surgery sessions increased from 3.1 to 3.5 (p &lt; 0.001). Conclusions This study has shown that an analysis of historical data and an estimate of the optimal surgical time per surgical session could be helpful to avoid both a low and excessive use of the ORs and therefore to increase the efficiency of the ORs. Key messages An accurate analysis of surgical procedures duration is crucial to optimize operating room utilization. A data-based approach can improve OR management efficiency without extra resources.


2015 ◽  
Vol 45 (9) ◽  
pp. 2294-2314 ◽  
Author(s):  
Shane Elipot ◽  
Lisa M. Beal

AbstractThe Agulhas Current intermittently undergoes dramatic offshore excursions from its mean path because of the downstream passage of mesoscale solitary meanders or Natal pulses. New observations and analyses are presented of the variability of the current and its meanders using mooring observations from the Agulhas Current Time-Series Experiment (ACT) near 34°S. Using a new rotary EOF method, mesoscale meanders and smaller-scale meanders are differentiated and each captured in a single mode of variance. During mesoscale meanders, an onshore cyclonic circulation and an offshore anticyclonic circulation act together to displace the jet offshore, leading to sudden and strong positive conversion of kinetic energy from the mean flow to the meander via nonlinear interactions. Smaller meanders are principally represented by a single cyclonic circulation spanning the entire jet that acts to displace the jet without extracting kinetic energy from the mean flow. Synthesizing in situ observations with altimeter data leads to an account of the number of mesoscale meanders at 34°S: 1.6 yr−1 on average, in agreement with a recent analysis by Rouault and Penven (2011) and significantly less than previously understood. The links between meanders and the arrival of Mozambique Channel eddies or Madagascar dipoles at the western boundary upstream are found to be robust in the 20-yr altimeter record. Yet, only a small fraction of anomalies arriving at the western boundary result in meanders, and of those, two-thirds can be related to ring shedding. Most Agulhas rings are shed independently of meanders.


1968 ◽  
Vol 46 (11) ◽  
pp. 1331-1340 ◽  
Author(s):  
R. L. Armstrong ◽  
S. M. Blumenfeld ◽  
C. G. Gray

Extensive measurements of the methane ν3 and ν4 fundamental vibration–rotation bands in CH4–He mixtures and the ν3 band in CH4–He, CH4–N2, and CD4–He mixtures have been carried out in infrared absorption at 295 °K to pressures of 3000 atm. Some profiles of the ν3 band in CH4–Ar mixtures and in pure CH4 have also been obtained. Rotational correlation functions, band moments, and intermolecular mean squared torques have been determined from the ν3 band profiles. Theoretical calculations of the mean squared torque due to anisotropic multipolar, induction and dispersion interactions have been carried out. The theoretical and experimental torques are in order-of-magnitude agreement for the CH4–N2 and CH4–CH4 systems; for CH4–He, CD4–He, and CH4–Ar the theoretical values are two to three orders of magnitude too small to account for the experimental values, indicating that in these cases the dominant contribution to the torques is given by the anisotropic overlap forces.


1969 ◽  
Vol 47 (6) ◽  
pp. 515-517 ◽  
Author(s):  
Robin G. Booth ◽  
Norman Epstein

2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2019 ◽  
Author(s):  
Imre M. Jánosi ◽  
Miklós Vincze ◽  
Gábor Tóth ◽  
Jason A. C. Gallas

Abstract. Empirical flow field data evaluation in a well studied ocean region along the U.S. West Coast revealed a surprisingly strong relationship between the surface integrals of kinetic energy and enstrophy (squared vorticity). This relationship defines a single isolated Gaussian super-vortex, whose fitted size parameter is related to the mean eddy size, and the square of the fitted height parameter is proportional to the sum of the square of all individual eddy amplitudes obtained by standard vortex census. This finding allows a very effective coarse-grained eddy statistics with minimal computational efforts. As an illustrative example, the westward drift velocity of eddies is determined from a simple cross correlation analysis of kinetic energy integrals.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012166
Author(s):  
Dragos-Victor Anghel

Abstract We analyze the chain fountain effect-the chain siphoning when falling from a container onto the floor. We argue that the main reason for this effect is the inertia of the chain, whereas the momentum received by the beads of the chain from the bottom of the container (typically called “kicks”) plays no significant role. The inertia of the chain leads to an effect similar to pulling the chain over a pulley placed up in the air, above the container. In another model (the so called “scientific consensus”), it was assumed that up to half of the mechanical work done by the tension in the chain may be wasted when transformed into kinetic energy during the pickup process. This prevented the chain to rise unless the energy transfer in the pickup process is improved by the “kicks” from the bottom of the container. Here we show that the “kicks” are unnecessary and both, energy and momentum are conserved-as they should be, in the absence of dissipation-if one properly considers the tension and the movement of the chain. By doing so, we conclude that the velocity acquired by the chain is high enough to produce the fountain effect. Simple experiments validate our model and certain configurations produce the highest chain fountain, although “kicks” are impossible.


2020 ◽  
Vol 77 (5) ◽  
pp. 1661-1681
Author(s):  
Qingfang Jiang ◽  
Qing Wang ◽  
Shouping Wang ◽  
Saša Gaberšek

Abstract The characteristics of a convective internal boundary layer (CIBL) documented offshore during the East Coast phase of the Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER-EAST) field campaign has been examined using field observations, a coupled mesoscale model (i.e., Navy’s COAMPS) simulation, and a couple of surface-layer-resolving large-eddy simulations (LESs). The Lagrangian modeling approach has been adopted with the LES domain being advected from a cool and rough land surface to a warmer and smoother sea surface by the mean offshore winds in the CIBL. The surface fluxes from the LES control run are in reasonable agreement with field observations, and the general CIBL characteristics are consistent with previous studies. According to the LESs, in the nearshore adjustment zone (i.e., fetch &lt; 8 km), the low-level winds and surface friction velocity increase rapidly, and the mean wind profile and vertical velocity skewness in the surface layer deviate substantially from the Monin–Obukhov similarity theory (MOST) scaling. Farther offshore, the nondimensional vertical wind shear and scalar gradients and higher-order moments are consistent with the MOST scaling. An elevated turbulent layer is present immediately below the CIBL top, associated with the vertical wind shear across the CIBL top inversion. Episodic shear instability events occur with a time scale between 10 and 30 min, leading to the formation of elevated maxima in turbulence kinetic energy and momentum fluxes. During these events, the turbulence kinetic energy production exceeds the dissipation, suggesting that the CIBL remains in nonequilibrium.


2020 ◽  
Author(s):  
Ali Amir Khairbek

Standard enthalpies of hydrogenation of 29 unsaturated hydrocarbon compounds were calculated in the gas phase by CCSD(T) theory with complete basis set cc-pVXZ, where X = DZ, TZ, as well as by complete basis set limit extrapolation. Geometries of reactants and products were optimized at the M06-2X/6-31g(d) level. This M06-2X geometries were used in the CCSD(T)/cc-pVXZ//M06-2X/6-31g(d) and cc-pV(DT)Z extrapolation calculations. (MAD) the mean absolute deviations of the enthalpies of hydrogenation between the calculated and experimental results that range from 8.8 to 3.4 kJ mol−1 based on the Comparison between the calculation at CCSD(T) and experimental results. The MAD value has improved and decreased to 1.5 kJ mol−1 after using complete basis set limit extrapolation. The deviations of the experimental values are located inside the “chemical accuracy” (±1 kcal mol−1 ≈ ±4.2 kJ mol−1) as some results showed. A very good linear correlations between experimental and calculated enthalpies of hydro-genation have been obtained at CCSD(T)/cc-pVTZ//M06-2X/6-31g(d) level and CCSD(T)/cc-pV(DT)Z extrapolation levels (SD =2.11 and 2.12 kJ mol−1, respectively).


Sign in / Sign up

Export Citation Format

Share Document