Decay resistance of softwoods and hardwoods thermally modified by the Thermovouto type thermo-vacuum process to brown rot and white rot fungi

Holzforschung ◽  
2016 ◽  
Vol 70 (9) ◽  
pp. 877-884 ◽  
Author(s):  
Jie Gao ◽  
Jong Sik Kim ◽  
Nasko Terziev ◽  
Geoffrey Daniel

Abstract Softwoods (SW, spruce and fir) and hardwoods (HW, ash and beech) were thermally modified by the thermo-vacuum (Termovuoto) process for 3–4 h in the temperature range 160–220°C (TMW160–220°C) and their fungal durability were examined in soil-block tests with two brown rot (BR, Postia placenta, Gloeophyllum trabeum) and two white rot (WR, Pycnoporus sanguineus, Phlebia radiata) fungi. SW-TMW160–220°C were exposed to P. placenta and P. sanguineus and HW-TMW190–220°C to all fungal species. Considerable improvement (durability class 1–3) in decay resistance was only achieved for SW- and HW-TMW220°C. Thermal modification (TM) below 200°C influenced decay resistance negatively in case of some fungal species applied for both SW and HW. Judged by the durability class, decay resistance was higher in HW- than in SW-TMW at high TM temperature. Behavior of TM differed significantly between ash (ring-porous HW) and beech (diffuse-porous HW). A comparison between results of soil- and agar-block tests on Termovouoto wood demonstrated that the influence of testing method in terms of assignment to durability classes is not significant.

2013 ◽  
Vol 667 ◽  
pp. 482-489 ◽  
Author(s):  
Md. Saiful Islam ◽  
Sinin Hamdan ◽  
Mohamad Rusop ◽  
Md. Rezaur Rahman

The effects of nanoclay on the thermal stability and decay resistance properties of tropical wood polymer nanocomposites (WPNCs) were investigated in this work. WPNC were prepared from several selected tropical wood species by impregnating the selected woods with a combination of nanoclay and phenol formaldehyde (PF) prepolymer mixture. The formation of WPNC was confirmed by the fourier transform infrared spectroscopy (FTIR) analysis. Thermal property of manufactured WPNC in terms of thermogravimetric analysis (TGA) was evaluated, and an improvement in thermal stability was found for fabricated WPNC. The wood was then exposed to two types of fungi; white-rot (polyporous versicolor) and brown-rot (postia placenta), for 12 weeks. Decay was assessed through percentage (%) of weight loss. A significant improvement was found in the treated woods compared to the untreated ones. In addition, the fabricated WPNC showed lower moisture content compared with raw one.


Holzforschung ◽  
1999 ◽  
Vol 53 (5) ◽  
pp. 491-497 ◽  
Author(s):  
Catherine C. Celimene ◽  
Jessie A. Micales ◽  
Leslie Ferge ◽  
Raymond A. Young

Summary Three stilbenes, pinosylvin (PS), pinosylvin monomethyl ether (PSM) and pinosylvin dimethyl ether (PSD), were extracted from white spruce (Picea glauca), jack pine (Pinus banksiana), and red pine (Pinus resinosa) pine cones, and their structures were confirmed by spectroscopic and chromatographic (HPLC, GC/MS, NMR and FTIR) analysis. PS, PSM, PSD or a 1:1:1 mixture of these stilbenes at concentrations of 0.1 % and 1.0 % were examined for their fungal inhibitory activity by two bioassay methods. Growth of white-rot fungi (Trametes versicolor and Phanerochaete chrysosporium), and brown-rot fungi (Neolentinus lepideus, Gloeophyllum trabeum and Postia placenta) on agar media in the presence of each of the stilbenes or a 1:1:1 mixture inhibited growth of white-rot fungi, but slightly stimulated growth of brown-rot fungi. Soil-block assays, conditions more representative of those found in nature, did not correlate with those from the screening on agar media. PS, PSM, PSD or a 1:1:1 mixture of the three compounds at concentrations of 0.1 % and 1.0 % did not impart any significant decay resistance to white-rot fungi inoculated on a hardwood (Red maple). However under the same conditions, decay resistance was observed against brown-rot fungi on a softwood (Southern yellow pine). It appears that stilbenes at least partially contribute to wood decay resistance against brown-rot fungi.


BioResources ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 606-614 ◽  
Author(s):  
Jing Wang ◽  
Jian Li ◽  
Shujun Li ◽  
Camille Freitag ◽  
J. J. Morrell

Three extractives from China-fir were obtained by a sequential extraction processes with hexane, ethyl acetate, and methanol. The components of the three extractives were analyzed: (1) The gas chromatography-mass spectrometry (GC-MS) analysis showed that in addition to the presence of cedrol, naphthalenes comprised a relatively large percentage of both the hexane extract (10.39%) and the ethyl acetate extract (9.43%). (2) Total phenolic contents analysis showed that phenols took up 6.66 % of the ethyl acetate extract and 22.8% of the methanol extract. All extracts, even with low concentrations, presented fair antifungal activities against two white-rot fungi, Trametes versicolor and Irpex lacteusand two brown-rot fungi, Postia placenta and Gloeophyllum trabeum. Cedrol and naphthalenes were partly responsible for the bioactivities. The synergistic effect of phenols and antifungal compounds also contributed to the wood decay resistance.


Holzforschung ◽  
2019 ◽  
Vol 73 (2) ◽  
pp. 151-154 ◽  
Author(s):  
Marcelo F. da Silveira ◽  
Fernando N. Gouveia ◽  
Alessandro C.O. Moreira ◽  
José Roberto V. Oliveira ◽  
Anna Sofya V.S. Silva ◽  
...  

AbstractNatural resistance of eight wood species from Caatinga, an exclusive Brazilian biome, was evaluated according to [ASTM Standard (2005) D 2017-05. Standard test method of accelerated laboratory test of natural decay resistance of woods.]. Samples were exposed to white rot (WR) and brown rot (BR) fungi, namely toTrametes versicolor(WR),Pycnoporus sanguineus(WR), Gloeophyllum trabeum(BR) andGloeophyllum striatum(BR). Weight loss, specific gravity and extractive content of each wood species were evaluated.Diptychandra aurantiaca,Pterodon abruptusandTerminalia fagifoliawere classified as “highly resistant”, whileT. fagifoliawas “resistant” toT. versicoloronly.Machaerium acutifoliumwas resistant to all fungi.Aspidosperma multiflorumwas resistant to WR fungi andCombretum glaucocarpumto a BR fungus. The speciesPityrocarpa moniliformisandSwartzia psilonemawere moderately resistant.


Holzforschung ◽  
2011 ◽  
Vol 65 (4) ◽  
Author(s):  
Jelena Chirkova ◽  
Ingeborga Andersone ◽  
Ilze Irbe ◽  
Baiba Spince ◽  
Bruno Andersons

Abstract Pinewood was modified by vacuum impregnation with various aqueous lignin solutions of low concentration (0.5– 1.0%) and its decay resistance was tested by the standard procedure EN 113. Five lignin types were tested against three brown rot and one white rot fungi. The bio-durability of wood was considerably increased by the treatment. The highest effect of modification was for alkali, kraft, hydrolysis lignins and industrial lignosulfonate, when mass losses of wood for brown-rot fungi were negligible. The effect of the modification with certified lignosulfonates was insignificant. Chemical analysis revealed that phenols, which are leached from lignin and are adsorbed by wood in the impregnation process, could act as a biocide. The hydrophilic properties of wood either did not change (certified lignins) or were enhanced because of some change in the pore structure (industrial lignins). Further tests are needed to verify the positive effects of this technologically simple and environmentally friendly treatment.


Holzforschung ◽  
1999 ◽  
Vol 53 (3) ◽  
pp. 230-236 ◽  
Author(s):  
F. Cardias Williams ◽  
M.D. Hale

Summary This study was to assess the bioprotectant performance of chemical modification with three different isocyanates (n-butyl, hexyl and 1,6-diisocyanatohexane, BuNCO, HeNCO and HDI respectively) in Corsican pine (Pinus nigra Schneid) sapwood. Wood-isocyanate bond formation was verified by the increase in sample weight, volume and by infra-red spectroscopy. Basidiomycete (Coniophora puteana, Gloeophyllum trabeum, Coriolus versicolor, Pycnoporus sanguineus) decay tests demonstrated protection by chemical modification. The relationships of fungal species, weight percent gain (WPG), and decay induced weight loss were examined. One of the brown rot fungi, C. puteana, showed higher threshold protection values than the other fungi tested and the diisocyanate showed better performance. Chemical characteristics of the sound and brown rotted wood (C. puteana) have been examined using sulphuric acid and sodium chlorite procedures to clarify the principles which govern isocyanate modifications and restrict fungal decay. These demonstrated that appreciable wood protection against C. puteana only occurred when the holocellulose fraction showed substantial changes due to chemical modification.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1262
Author(s):  
Laura Hasburgh ◽  
Samuel Zelinka ◽  
Amy Bishell ◽  
Grant Kirker

Shou sugi ban, also known as yakisugi, or just sugi ban, is an aesthetic wood surface treatment that involves charring the surface of dimensional lumber, such as exterior cladding. The goal of this research is to examine the effect of shou sugi ban on the flammability and decay resistance of wood. Several species and variants of commercially available sugi ban were tested. The flammability was examined from the heat release rate curves using the oxygen consumption method and cone calorimeter. Durability was examined with a soil block assay for one white-rot fungus and one brown-rot fungus. The testing showed that the shou sugi ban process did not systematically improve the flammability or durability of the siding


Wood Research ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 556-568
Author(s):  
JIAPENG WANG ◽  
ZHENJU BI ◽  
ZHANGJING CHEN ◽  
LI YAN ◽  
YAFANG LEI

The cinnamaldehyde, salicylic acid, stearolic acid and citric acid were plant-derived organic compounds that can be activated to fungi, that could degrade the wood in long term. The compounds with concentrations of 3%, 5% and 7% assisted by different dispersants were impregnated into poplar (Populus nigra L.) specimens by the vacuum-pressure method. After that, weight percentage gain (WPG), decay resistance against white-rot fungi (Trametes versicolor) and brown-rot fungi (Gloeophyllum trabeum), color change, dimensional stability and mechanical properties including modulus of elasticity (MOE) and modulus of rupture (MOR) were measured. The results indicated that cinnamaldehyde impregnated poplar showed antifungi activity against both G. trabeumand T. versicolor, and citric acid impregnated poplar showed antifungi activity against G. trabeum. The color of poplar specimens before and after impregnated cinnamaldehyde and citric acid had a little change, dimensional stability had been improved and mechanical properties especially for MOR increased significantly.


Holzforschung ◽  
2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Richard Giles ◽  
Ilona Peszlen ◽  
Perry Peralta ◽  
Hou-Min Chang ◽  
Roberta Farrell ◽  
...  

AbstractBetter access to wood carbohydrates as a result of reduced, or altered, lignin is a goal of biopulping, as well as biofuel research. In the present article, woods from three transgenic trees and one wild-type quaking aspen (Populus tremuloidesMichx.) were analyzed in terms of mass loss of cellulose and lignin after incubation with lignocellulolytic fungi. The transgenic trees had reduced lignin content through transfer of an antisense -4CL gene, elevated syringyl/guaiacyl (S/G) ratio through insertion of a sense CAld5H gene and low lignin content and elevated S/G ratio through simultaneous insertion of -4CL and CAld5H genes, respectively. The lignocellulolytic fungi employed were a lignin-selective white rot fungusCeriporiopsis subvermispora, a simultaneous white rot fungusTrametes versicolorand a brown rot fungusPostia placenta. Reduced lignin degradation was observed in woods with increased S/G ratios indicating that this analytical feature influences decay resistance, regardless of the fungal decay mechanism.


2016 ◽  
Vol 17 (1) ◽  
pp. 37-47 ◽  
Author(s):  
F. J. Fuentes-Talavera ◽  
J. A. Silva-Guzmán ◽  
R. Rodríguez-Anda ◽  
M. G. Lomelí-Ramírez ◽  
R. Sanjuán-Dueñas ◽  
...  

This paper reports on mechanical properties and natural durability of avocado branch wood (Persea americana Mill.) with the objectives of providing a reliable property profile and to promote the rational use of this abundant yet largely neglected natural resource.  The mechanical properties (static bending, compression, shear, impact bending) and hardness were determined in accordance with European standards (CEN). Natural durability was assessed according to the European standard EN 350-1 (agar block test) using the white rot fungi Trametes versicolor and Phanerochaete chrysosporium, and the brown rot fungus Postia placenta. Avocado trees yield a low to medium density (0,44-0,54-0,64 g/cm3 at 12% mc) branch wood with below average strength under static bending, compression and tension parallel to the grain and average values for longitudinal shear, impact bending and hardness. The wood is rated non-resistant (class 5 according to EN 350-1) and thus is not suitable for exterior applications unless treated. Considering its property profile and the small dimensions available, avocado wood is recommended for general carpentry, furniture, interior paneling, glue-boards for closets and cabinets, and glue-lams for indoor framework.


Sign in / Sign up

Export Citation Format

Share Document