Theoretical and experimental considerations on the neutral axis of wood beams with a hole in different locations

Holzforschung ◽  
2018 ◽  
Vol 72 (9) ◽  
pp. 769-777
Author(s):  
Yuxin Wen ◽  
Ping Yang ◽  
Jian Zhao ◽  
Dong Zhao

AbstractHoles contribute to the non-homogeneous nature of solid wood and shift the neutral axis of wood beams away from the centroid. Based on the plane-section assumption and idealized trapezoidal distribution, new calculating formulas will be presented in terms of the location of neutral axis for clear beams and wood beams with a hole at the center, compression zone and tension zone. To verify the results of theoretical analysis and formulas, four-point bending experiments of wood beams were performed by a digital image correlation (DIC) technique. There is a reasonable agreement between calculated and experimental results with a hole at the center or in the compression zone of the beams. Concerning a hole in the tension zone, on the other hand, the calculated locations of neutral axis are not in agreement with the experimental results, due to the plastic behavior on both the compression and tension zones of the beams in the inelastic stage.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 474
Author(s):  
Yufan Yan ◽  
Xianjia Meng ◽  
Chuanyong Qu

The fatigue damage behavior of bone has attracted significant attention in both the mechanical and orthopedic fields. However, due to the complex and hierarchical structure of bone, describing the damage process quantitively or qualitatively is still a significant challenge for researchers in this area. In this study, a nonlinear bi-modulus gradient model was proposed to quantify the neutral axis skewing under fatigue load in a four-point bending test. The digital image correlation technique was used to analyze the tensile and compressive strains during the fatigue process. The results showed that the compressive strain demonstrated an obvious two-stage ascending behavior, whereas the tensile strain revealed a slow upward progression during the fatigue process. Subsequently, a theoretical model was proposed to describe the degradation process of the elastic modulus and the movement of the neutral axis. The changes in the bone properties were determined using the FEM method based on the newly developed model. The results obtained from two different methods exhibited a good degree of consistency. The results obtained in this study are of help in terms of effectively exploring the damage evolution of the bone materials.


2019 ◽  
Vol 258 ◽  
pp. 05008
Author(s):  
Farida Lenggani ◽  
Bambang Suryoatmono

It is very frequent that solid wood beams need to be connected one to another to obtain a longer beam. In this study, the behavior of solid wood beams connections using plywood sheets as connecting elements and staples as mechanical fasteners were studied experimentally. The experimental results were compared with elastic analyses. Both beam and plywood were made of meranti (shorea). The staple type was MAX 1022J. This study was conducted on two specimens. The first specimen had two rows of staples on the front and back sides of the specimen. Each row consisted of ten staples making a total of 40 staples. The second one had three rows of staples on the front and back sides of the specimen. Each row consisted of ten staples making a total of 60 staples. From the tests, it can be concluded that each material in the connection, namely wood beam, plywood, and staples, failed. Failure mode of the wood beam was in the form of crack and tear. Failure mode of the plywood was the damage of the plywood directly contacted with the crown of the staples. Failure modes of the staples were flexural yielding. The differences between connection strength obtained from tests and elastic analyses were 8.18% for the first specimen and 0.65% for the second specimen, with the test results were higher than the elastic analyses results. It can be concluded that elastic analysis is quite accurate and conservative to estimate the strength of this type of connection, provided that the lateral resistance of connection with a staple is known.


Holzforschung ◽  
2012 ◽  
Vol 66 (4) ◽  
Author(s):  
Philip M. Davis ◽  
Rakesh Gupta ◽  
Arijit Sinha

Abstract For wood beams, it is often assumed that the neutral axis (NA) is located at the centroid of the beam. This would be the case for isotropic and homogeneous materials but these prerequisites are not valid for wood. The varying grain patterns and knots located throughout wood make wood anisotropic and non-homogeneous. Knowledge of the true location of the neutral axis would facilitate a better understanding of the mechanical behavior of wood beams. To analyze this question, a digital image correlation technique (speckle photography) was applied while wood beams with the dimensions 25×25 mm2 and 38×89 mm2 were loaded in bending. The NA was determined by axial strain plots. From the data obtained it is was observed that the neutral axis of 25×25 mm2 beams is located below the centroid while for 38×89 mm2 beams NA was above the centroid. As would be expected, knots change the location of the NA depending on their location in the beam.


Holzforschung ◽  
2013 ◽  
Vol 67 (8) ◽  
pp. 941-948 ◽  
Author(s):  
Hiroshi Yoshihara

Abstract The flexural Young’s modulus of western hemlock, medium-density fiberboard, and 5-plywood (made of lauan) has been determined by conducting three- and four-point bending tests with various span lengths and by flexural vibration test. The Young’s modulus was significantly influenced by the deflection measurement method. In particular, the Young’s modulus was not reliable based on the difference between the deflections at two specific points in the specimen, although this test is standardized according to ISO 3349-1975 and JIS Z2101-2009.


Author(s):  
M. R. W. Brake ◽  
P. L. Reu ◽  
D. S. Aragon

The results of two sets of impact experiments are reported within. To assist with model development using the impact data reported, the materials are mechanically characterized using a series of standard experiments. The first set of impact data comes from a series of coefficient of restitution (COR) experiments, in which a 2 m long pendulum is used to study “in-context” measurements of the coefficient of restitution for eight different materials (6061-T6 aluminum, phosphor bronze alloy 510, Hiperco, nitronic 60A, stainless steel 304, titanium, copper, and annealed copper). The coefficient of restitution is measured via two different techniques: digital image correlation (DIC) and laser Doppler vibrometry (LDV). Due to the strong agreement of the two different methods, only results from the digital image correlation are reported. The coefficient of restitution experiments are in context as the scales of the geometry and impact velocities are representative of common features in the motivating application for this research. Finally, a series of compliance measurements are detailed for the same set of materials. The compliance measurements are conducted using both nano-indentation and micro-indentation machines, providing sub-nm displacement resolution and μN force resolution. Good agreement is seen for load levels spanned by both machines. As the transition from elastic to plastic behavior occurs at contact displacements on the order of 30 nm, this data set provides a unique insight into the transitionary region.


2008 ◽  
Vol 13-14 ◽  
pp. 105-114
Author(s):  
Amit Puri ◽  
Alexander D. Fergusson ◽  
I. Palmer ◽  
Andrew Morris ◽  
F. Jensen ◽  
...  

This paper presents the experimental results obtained of flexurally loaded wind turbine blade cross section material. All material was extracted from a wind turbine blade box girder and testing was conducted in four point configuration. The aim was to gain an understanding of the structural integrity of this lightweight material as it deforms in flexure. To allow for thorough analysis, digital image correlation (DIC) was used to produce full field strain maps of the deforming specimens. Results highlight the capability of the DIC technique to identify regions of failure, as well as the aspects responsible for them. Overall, the results present a foundation for tests on larger substructure, and eventually integration into manufacturing and maintenance aspects of the industry.


Author(s):  
Giovanni B. Broggiato ◽  
Luca Cortese

In experimental mechanics, the possibility of tracking on component surfaces the full-field stress and strain states during deformation can be utilized for many purposes such as formability limits determination, quantification of stress intensification factors, material characterization and so on. Concerning the last topic, an interesting application could be a direct identification of the elasto-plastic material response up to large deformation. It is well known, in fact, that with traditional measurement devices it is possible to retrieve the true equivalent stress versus true equivalent strain data from tensile tests only up to the onset of necking, where localization starts to occur. This work aims to show how from the knowledge of a tensile test full-field strain and of load data it will be possible to obtain the full-stress field as well as the complete material elasto-plastic behavior.


2016 ◽  
Vol 36 (5) ◽  
pp. 347-359 ◽  
Author(s):  
Qiyi Chu ◽  
Yong Li ◽  
Jun Xiao ◽  
Dajun Huan ◽  
Xiaodong Chen

The change of mold normal curvature along the trajectory may result in out-of-plane waviness during the automated laying process, on which the layup speed and temperature would have an effect. A new parameter, deformation rate, was defined by combining the effect of mold curvature change rate and layup speed. A predicting model was proposed based on the fiber waviness and interlaminar sliding model to calculate the relationship between stiffness retention and the layup process parameters, including deformation rate and temperature. An experimental study on the effect of different deformation parameters on the tensile performance of composites was carried out based on a new manufacturing method of plated specimens with different levels of waviness by means of a four-point bending fixture. The experimental results showed that when the deformation temperature increases from 20℃ to 80℃, the tensile strength increases first and then decreases while the tensile module keeps increasing. While the deformation rate decreases from 0.40 to 0.04 mm−1/s, both tensile strength and module showed an increasing trend. The predicting model being validated by experimental results can be utilized to optimize the layup process parameter to satisfy the quality and efficiency requirements.


2021 ◽  
pp. 1-35
Author(s):  
D. Kumar ◽  
T. Goyal ◽  
S. Kamle ◽  
P.M. Mohite ◽  
E.M. Lau

Abstract Large birds have evolved an effective wing anatomy and mechanics, enabling airborne mastery of manoeuvres and endurance. For these very reasons, they are difficult to replicate and study. The aim of the present work is to achieve active wing articulations to mimic natural bird flapping towards efficient and agile Unmanned Aerial Vehicles (UAVs). The proposed design, bio-mimicking the black-headed gull, Larus ridibundus, has three active and independent servo-controlled wing joints at the shoulder, elbow and wrist to achieve complex controls. The construction of the wing is realised through a polymeric skin and carbon fibre–epoxy composite spars and ribs. The wing movements (flapping, span reduction and twisting) envelopes of the full-scale robotic gull (Robogull) are examined using the Digital Image Correlation (DIC) technique and laser displacement sensing. Its aerodynamic performance was evaluated in a wind tunnel at various flapping parameters, wind speeds and angles of attack. It is observed that a flapping amplitude of 45 $^\circ$ is more favourable than 90 $^\circ$ for generating higher lift and thrust, while also depending on the presence of span reduction, twist and wind speed. The model performs better at a flying velocity of 4m/s as compared with 8m/s. Both lift and thrust are high at a higher flapping frequency of 2.5Hz. Combined variation of the flapping frequency and stroke ratio should be considered for better aerodynamic performance. The combination of a lower stroke ratio of 0.5 with a flapping frequency of 2.5Hz generates higher lift and thrust than other combinations. Span reduction and wing twist notably and independently enhance lift and thrust, respectively. An increase in the angle-of-attack increases lift but decreases thrust. The model can also generate a significant rolling moment when set at a bank angle of 20 $^\circ$ and operated with independently controlled flapping amplitudes for the wings (45 $^\circ$ for the left wing and 90 $^\circ$ for the right wing). Based on the optimal values for the flapping amplitude (45 $^\circ$ ), flapping frequency (2.5Hz) and flying velocity (4m/s), the Strouhal number (St) of the Robogull model is 0.24, lying in the optimal range ( $0.2 < \mathrm{St} < 0.4$ ) for natural flyers and swimmers.


Sign in / Sign up

Export Citation Format

Share Document