Moisture adsorption thermodynamics of wood from fractal-geometry approach

Holzforschung ◽  
2004 ◽  
Vol 58 (3) ◽  
pp. 274-279 ◽  
Author(s):  
J. Cao ◽  
D.P. Kamdem

Abstract The fractal-geometry approach was used to calculate the thermodynamic properties of moisture sorption by wood from the adsorption isotherms in this study. The results were compared with those from an isosteric approach and a calorimetric approach. The adsorption isotherms of Southern yellow pine (Pinus spp.) were measured at 4, 15, 30, and 40°C to provide source data for the calculation of both fractal-geometry and isosteric approaches. The results show that the fractal dimensions of the internal surfaces of wood vary between 2.4 and 2.5. The curves of the differential heat of adsorption −∆H against moisture content from the fractal-geometry approach are similar to those from calorimetric measurements in previous research. The −∆H values from the isosteric approach increased with moisture content within a moisture content range up to 3%. And, at moisture contents higher than 3%, the −∆H values from this method are much higher than those from the fractal-geometry approach and calorimetric approach. As a result, the fractal-geometry approach is applicable to calculate the differential thermodynamic properties of moisture sorption by wood in future research.

Author(s):  
Olusegun J Oyelade

Insights into the relationship between the air relative humidity (water activity (aw)) and equilibrium moisture content of food materials is essential to maintain good keeping quality and optimize process operation. The adsorption isotherms for cassava flour (lafun) were investigated with the static gravimetric method. Concentrated acid (H2SO4) solutions were used to vary the micro-climate in the study and presented in an easy-to-use template-like format over the range of temperature (27- 40oC) and aw (0.10-0.80) usually experienced in the tropical environment. The experimental data were compared with five widely recommended models in the literature for food sorption isotherms (GAB, modified GAB, modified Oswin, modified Henderson & modified Chung-Pfost). The moisture sorption isotherms were sigmoidal in shape and were influenced by temperature. The modified Oswin model was found to be most adequate whilst the modified GAB appears not suitable to model the adsorption isotherms for lafun.


2017 ◽  
Vol 13 (1) ◽  
pp. 29 ◽  
Author(s):  
Mutiara Nur Alfiah ◽  
Sri Hartini ◽  
Margareta Novian Cahyanti

<p>This research aims to determine moisture sorption isotherm curves, moisture sorption isotherm models and thermodynamic properties of fermented cassava flour by red yeast rice. The moisture sorption isotherm model used are Guggenheim Anderson deBoer (GAB), Brunauer Emmet Teller (BET) and Caurie. Meanwhile, the test of modelling accuray by Mean Relative Deviation (MRD) and Root Mean Square Error (RMSE). The thermodynamic properties, i.e., enthalpy and entropy were calculated by Clausius - Clapeyron equation. The result shows that the moisture sorption isotherm curve on fermented cassava flour in a sigmoid form (type II). The GAB model is the best model for moisture sorption isotherm of fermented cassava flour by red yeast rice. The MRD and RMSE values at 30˚C, 35˚C and 40˚C are 3.12%, 2.71%, 3.81%, and 1.01, 0.35, 0.42, respectively. The monolayer moisture content at 30˚C, 35˚C and 40˚C are 6.61%, 6.27% and 6.91%, based on GAB model. Meanwhile, when the BET model was used, the monolayer moisture content are 4.92%, 4.86% and 5.19%, while by Caurie model are 6.37%, 6.18% and 5.30%, at 30˚C, 35˚C and 40˚C, respectively. The enthalpy and entropy of water sorption process were decreased when moisture content increased.</p>


2019 ◽  
Vol 14 (1) ◽  
pp. 93 ◽  
Author(s):  
Gentil Andres Collazos-Escobar ◽  
Nelson Gutiérrez-Guzman ◽  
Henry A. Vaquiro Herrera

Specialty coffee is highly differentiated product because of  its sensorial attributes: aroma, body and brand reputation. In specialized markets, these products are highly valued, and sometimes up to six times their commercial value is paid. Thus, it is essential to preserve their freshness. Sorption isotherms are necessary for determining and studying water sorption changes in specialty coffee during storage. This study aimed to determine the adsorption isotherms of specialty ground roasted-coffee at temperatures of 25 °C, 30 °C and 40 °C and water activities between 0.1 and 0.8 using the dynamic dewpoint method (DDI). The experiment sorption data were modeled using 12 different equations with non-linear regression to represent the dependence of the equilibrium moisture content with both water activity and temperature. In addition, the thermodynamic properties were determined with the experiment adsorption data. The results showed that type III isotherms were obtained according to the Brunauer classification, and the Weibull equation satisfactorily modeled the effect of the temperature on the hygroscopic equilibrium in the specialty ground roasted-coffee. The results of thermodynamic analysis showed that the net isosteric heat of adsorption and Gibbs free energy decreased as the equilibrium moisture content increased, indicating the amount of energy released, a strong bond energy between water molecules in the product components and spontaneity in the adsorption process. The entropy of the adsorption increased with the moisture content, leading to product stability conditions during storage. The results were similar to those reported for the roasted and ground coffee of others cultivars.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Tiantian Yang ◽  
Erni Ma

Thermodynamic approach is a useful method to study interactions between water and wood at molecular level. This work investigated the dynamic moisture sorption and thermodynamic properties for two thick poplar woods (Populus euramericanaCv.) subjected to sinusoidal relative humidity (RH) changes between 45% and 75% for cyclic period of 1, 6, and 24 h, at two temperatures of 25°C and 40°C. Moisture changes of the specimens were measured during the successive adsorption and desorption processes, giving the following results: (1) moisture content changed sinusoidally with the imposed RH and was inversely related to specimen thickness as well as temperature, but in a positive correlation with cyclic periods; (2) all ofQL,ΔG, andTΔSof the adsorbed water during dynamic sorption decreased with increasing moisture content or specimen thickness and decreasing cyclic period. However, temperature had opposite effects onΔGandTΔS. (3) Both moisture sorption hysteresis and thermodynamic sorption hysteresis could be found. The former became weak with rising temperature or thicker specimens, while the latter got clear when temperature or specimen thickness increased.


2017 ◽  
Vol 13 (1) ◽  
pp. 29 ◽  
Author(s):  
Mutiara Nur Alfiah ◽  
Sri Hartini ◽  
Margareta Novian Cahyanti

<p>This research aims to determine moisture sorption isotherm curves, moisture sorption isotherm models and thermodynamic properties of fermented cassava flour by red yeast rice. The moisture sorption isotherm model used are Guggenheim Anderson deBoer (GAB), Brunauer Emmet Teller (BET) and Caurie. Meanwhile, the test of modelling accuray by Mean Relative Deviation (MRD) and Root Mean Square Error (RMSE). The thermodynamic properties, i.e., enthalpy and entropy were calculated by Clausius - Clapeyron equation. The result shows that the moisture sorption isotherm curve on fermented cassava flour in a sigmoid form (type II). The GAB model is the best model for moisture sorption isotherm of fermented cassava flour by red yeast rice. The MRD and RMSE values at 30˚C, 35˚C and 40˚C are 3.12%, 2.71%, 3.81%, and 1.01, 0.35, 0.42, respectively. The monolayer moisture content at 30˚C, 35˚C and 40˚C are 6.61%, 6.27% and 6.91%, based on GAB model. Meanwhile, when the BET model was used, the monolayer moisture content are 4.92%, 4.86% and 5.19%, while by Caurie model are 6.37%, 6.18% and 5.30%, at 30˚C, 35˚C and 40˚C, respectively. The enthalpy and entropy of water sorption process were decreased when moisture content increased.</p>


2005 ◽  
Vol 23 (9) ◽  
pp. 763-776 ◽  
Author(s):  
Narihito Tatsuda ◽  
Yasutomo Goto ◽  
Norihiko Setoyama ◽  
Yoshiaki Fukushima

The adsorption of carbon dioxide on mesoporous silicas was studied near the critical temperature (Tc) of CO2, i.e. 304.2 K. The critical temperature in the mesopores at which the first-order phase transition (capillary condensation) was observed (Tcp) was estimated from the inverse slope of the adsorption isotherms and the behaviour of the adsorption isotherms per unit surface area. The values of Tcp for CO2 in mesopores whose radii, rp, were 3.02 and 2.14 nm were higher than those estimated using a slab model in which the adsorbing parts of layer were clearly separated from the non-adsorbing regions. The differential heat of adsorption decreased with increasing pore size of the mesoporous adsorbent. This result also suggested a deviation from the slab model.


2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
V. Garcia-Cuello ◽  
J. C. Moreno-Piraján ◽  
L. Giraldo-Gutiérrez ◽  
K. Sapag ◽  
G. Zgrablich

An adsorption microcalorimeter for the simultaneous determination of the differential heat of adsorption and the adsorption isotherm for gas-solid systems are designed, built, and tested. For this purpose, a Calvet heat-conducting microcalorimeter is developed and is connected to a gas volumetric unit built in stainless steel to record adsorption isotherms. The microcalorimeter is electrically calibrated to establish its sensitivity and reproducibility, obtaining K=154.34±0.23 WV−1. The adsorption microcalorimeter is used to obtain adsorption isotherms and the corresponding differential heats for the adsorption of CO2 on a reference solid, such as a NaZSM-5 type zeolite. Results for the behavior of this system are compared with those obtained with commercial equipment and with other studies in the literature.


Author(s):  
Jaqueline F. V. Bessa ◽  
Osvaldo Resende ◽  
Daniel E. C. de Oliveira ◽  
Rayr R. de Lima ◽  
Wellytton D. Quequeto ◽  
...  

ABSTRACT Safflower is a crop of high economic value with high oil concentration in its seeds and great industrial versatility, besides various benefits to human health. As with other agricultural crops, it is common to store safflower to make it available in different periods of the year and, due to its hygroscopic characteristics, studies evaluating the effect of temperature and air relative humidity on its moisture content become relevant. Thus, the objective of the present study was to determine the water adsorption isotherms of safflower seeds and analyze their thermodynamic properties. Moisture contents of 6.5, 6.9, 7.3, 7.7, 8.3 and 9.1% (dry basis) were obtained by adsorption under controlled conditions of temperature (30 °C) and relative air humidity (90%). The adsorption isotherms were obtained by the indirect static method at different temperatures (10, 20, 30 and 40 °C). As temperature increased, for the same moisture content, there was an increase in water activity and, for constant water activity, the values of equilibrium moisture content decreased with increasing temperature. Chung-Pfost model showed the best fit to describe the phenomenon of hygroscopicity of safflower seeds. The thermodynamic properties were influenced by the moisture content of the seeds, reducing the energy necessary for water absorption in the product with the increase in adsorption, and the enthalpy-entropy theory was controlled by enthalpy.


2021 ◽  
Vol 11 (2) ◽  
pp. 475
Author(s):  
Petr Zatloukal ◽  
Pavlína Suchomelová ◽  
Jakub Dömény ◽  
Tadeáš Doskočil ◽  
Ginevra Manzo ◽  
...  

This article presents the possibilities of decreasing moisture sorption properties via thermal modification of Norway spruce wood in musical instruments. The 202 resonance wood specimens that were used to produce piano soundboards have been conditioned and divided into three density groups. The first specimen group had natural untreated properties, the second was thermally treated at 180 °C, and the third group was treated at 200 °C. All specimens were isothermally conditioned at 20 °C with relative humidity values of 40, 60, and 80%. The equilibrium moisture content (EMC), swelling, and acoustical properties, such as the longitudinal dynamic modulus (E’L), bending dynamic modulus (Eb), damping coefficient (tan δ), acoustic conversion efficiency (ACEL), and relative acoustic conversion efficiency (RACEL) were evaluated on every moisture content level. Treatment at 180 °C caused the EMC to decrease by 36% and the volume swelling to decrease by 9.9%. Treatment at 200 °C decreased the EMC by 42% and the swelling by 39.6%. The 180 °C treatment decreased the value of the longitudinal sound velocity by 1.6%, whereas the treatment at 200 °C increased the velocity by 2.1%. The acoustical properties EL′, Eb, ACEL, and RACEL were lower due to the higher moisture content of the samples, and only the tanδ increased. Although both treatments significantly affected the swelling and EMC, the treatment at 180 °C did not significantly affect the acoustical properties.


Sign in / Sign up

Export Citation Format

Share Document