Equilibrium Moisture Content Models for Lafun

Author(s):  
Olusegun J Oyelade

Insights into the relationship between the air relative humidity (water activity (aw)) and equilibrium moisture content of food materials is essential to maintain good keeping quality and optimize process operation. The adsorption isotherms for cassava flour (lafun) were investigated with the static gravimetric method. Concentrated acid (H2SO4) solutions were used to vary the micro-climate in the study and presented in an easy-to-use template-like format over the range of temperature (27- 40oC) and aw (0.10-0.80) usually experienced in the tropical environment. The experimental data were compared with five widely recommended models in the literature for food sorption isotherms (GAB, modified GAB, modified Oswin, modified Henderson & modified Chung-Pfost). The moisture sorption isotherms were sigmoidal in shape and were influenced by temperature. The modified Oswin model was found to be most adequate whilst the modified GAB appears not suitable to model the adsorption isotherms for lafun.

Author(s):  
Akbar Arabhosseini ◽  
Willem Huisman ◽  
Anton van Boxtel ◽  
Joachim Müller

The equilibrium moisture content of tarragon, Artemisia dracunculus L. (stem and leaf separately) was determined by using the saturated salt solutions method at three temperatures (25, 50 and 70°C) within a range of 5 to 90% relative humidity. Both adsorption and desorption methods were used for stem and leaf of two varieties: Russian and French tarragon. Experimental curves of moisture sorption isotherms were fitted by modified Henderson, modified Halsey, modified Oswin, modified Chung-Pfost and GAB equations and evaluated by residual sum squares, standard error of estimate and mean relative deviation. The modified Halsey and GAB equations were found to be the most suitable for describing the relationship among equilibrium moisture content, relative humidity and temperature. There was no significant difference between the equilibrium moisture content of the Russian and French tarragon.


2014 ◽  
Vol 1033-1034 ◽  
pp. 681-689
Author(s):  
Zhong Yang Ren ◽  
Yan Yan Wu ◽  
Zhen Hua Duan ◽  
Lai Hao Li ◽  
Xian Qing Yang

The moisture sorption characteristics of salted largehead hairtail (Trichiurus lepturus) were investigated within the limits of water activity (0.11-0.98) at 25 and 35°C using a self-made instrument for the measurement of the equilibrium moisture content according to the static gravimetric method. The shape of the sorption isotherms was sigmoidal. The moisture sorption isotherms exhibited significant hysteresis. The hysteresis of salted fish may be due to the salt permeating into the body of the fish as a result of desorption and adsorption processes. Seventeen mathematical models were fit to the experimental data for the equilibrium moisture content at different water activity levels. The Ferro-Fontan equation provided the best fit for the experimental data of the equilibrium moisture content among the 17 models assessed for the sorption isotherms at 25 and 35°C. The net isosteric heats of sorption decreased gradually with increases in moisture content. The isosteric heats of sorption ranged from 44.59 kJ/mol to 45.61 kJ/mol between the moisture contents of 22.22% and 43.25% for salted largehead hairtail.


2000 ◽  
Vol 18 (No. 3) ◽  
pp. 86-90 ◽  
Author(s):  
N.D. Menkov ◽  
D.I. Gelyazkov

The equilibrium moisture contents were determined for millet seeds of two cultivars using the gravimetric static method at 10, 25 and 40°C over a range of relative humidities from 0.112 to 0.868. The sorption capacity of the seeds decreased with an increase in temperature at constant relative humidity. The hysteresis effect is not distinctly expressed but statistically significant. The differences between equilibrium moisture contents of the cultivars are small. Four models were applied for analyzing the experimental data using the following equations: modified Chung-Pfost, modified Halsey, modified Oswin, and modified Henderson. The modified Chung-Pfost model was found to be the most suitable for describing the relationship between equilibrium moisture content, relative humidity and temperature.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1658
Author(s):  
Mina Habibiasr ◽  
Mohd Noriznan Mokhtar ◽  
Mohd Nordin Ibrahim ◽  
Khairul Faezah Md Yunos ◽  
Nuzul Amri Ibrahim

A study on the effect of the physical properties and moisture sorption isotherm of palm kernels constitutes the critical criteria in evaluating the drying performance. The drying was evaluated as a function of moisture content (MC) in the range of 0.31–0.02 kg/kg (d.b.). Whereas, the equilibrium moisture content (EMC) of palm kernels (whole kernel and ground kernel) was determined experimentally using the standard gravimetric method at different temperatures (50 °C to 80 °C), over a range of relative humidity (RH) from 10% to 81%. Palm kernel length, width, and thickness decrease from 16.08 ± 2.09 mm to 14.17 ± 2.30 mm, 12.06 ± 1.40 mm to 11.24 ± 1.08 mm, and 10.01 ± 1.27 mm to 9.18 ± 1.04 mm, respectively, when MC decreased. Bulk density, surface area, and specific surface area decreased as the MC decreased, while porosity and true density were increased. EMC of palm kernels (whole kernel and ground kernel) decreased with an increase in temperature at constant RH. Modified Oswin and modified Halsey models were found to be the best for predicting desorption moisture isotherms for whole and ground palm kernel, respectively. Therefore, the study of the effect of drying on physical aspects as well as moisture sorption isotherms is important to further analyze the drying performance of Tenera palm kernel (e.g., equipment design and energy requirement).


Author(s):  
Zhao Yang ◽  
Enlong Zhu ◽  
Zongsheng Zhu

Abstract Moisture sorption isotherms of green soybean seeds were determined by static gravimetric method and water activity ranging from 0.11to 0.94 at 20, 30 and 40°C. The optimal sorption model of green soybean was determined by using nonlinear regression method. Modified BET multilayer sorption theory model parameters at different temperatures were calculated, isosteric sorption heat was derived by the water activity sorption isosteric model. Results indicated that sorption isotherms were belong to type III behaviour, a notable hysteresis effect was observed, Green soybean monolayer saturated sorption capacity was greater in desorption process than that of adsorption. The monolayer saturated sorption capacity decreased with increasing temperature, while the number of multilayer had a reverse trend with the monolayer saturated sorption capacity, the optimal sorption isotherm model for green soybean is Halsey model, The thermodynamic parameters including net isosteric heat of adsorption and desorption calculated at 40°C were 105.2-1865.4 kJ/kg and 111.62-1939.0 kJ/kg with equilibrium moisture content between 5% and 32% (d.b.), respectively. The net isosteric heat of sorption decreased with increasing equilibrium moisture content.


Author(s):  
Maria Carolina Soares Pereira ◽  
Jiří Štencl ◽  
Bohumíra Janštová ◽  
Václav Vlášek

Moisture sorption isotherms of Dutch type semi-hard cheese edge in the temperature range of 10–25 ºC and water activity (Aw) from 0.11 to 0.98 were determined using manometric method. The sorption curves had a sigmoid shape. The equilibrium moisture content (EMC) of cheese samples increased with an increase in Aw at a constant temperature both for water adsorption and desorption. An increase in temperature caused an increase in Aw for the same moisture content (MC) and, if Aw was kept constant, an increase in temperature caused a decrease in the amount of absorbed water. Critical values of equilibrium moisture content, corresponding to the Aw = 0.6, were between 11 % MC (w.b.) and 17 % MC (w.b.) both for moisture adsorption and desorption. Values of sorption heat were calculated from moisture sorption isotherms by applying the Clausius-Clapeyron equation. Values of the heat of desorption are higher than those of adsorption and the difference increases with the MC decrease. Heat of sorption decreased from 48.5 kJ/mol (~5.5 % MC w.b.) to the values approaching the heat of vaporization of pure water, free MC. The critical value for free water evaporation is about w = 27 % (w.b.) for the range of temperature 10–25 ºC.


2014 ◽  
Vol 44 (3) ◽  
pp. 189-194
Author(s):  
H. TAVAKOLIPOUR ◽  
M. MOKHTARIAN

Moisture sorption isotherms for pistachio powder were determined by gravimetric method at temperatures of 15, 25, 35 and 40ºC. Some mathematical models were tested to measure the amount of fitness of experimental data. The mathematical analysis proved that Caurie model was the most appropriate one. As well, adsorptiondesorption moisture content of pistachio powder were predicted using artificial neural network (ANN) approach. The results showed that, MLP network was able to predict adsorption-desorption moisture content with R2 values of 0.998 and 0.992, respectively. Comparison of ANN results with classical sorption isotherm models revealed that ANN modeling had greater accuracy in predicting equilibrium moisture content of pistachio powder.


2014 ◽  
Vol 10 (4) ◽  
pp. 747-755
Author(s):  
Hamid Tavakolipour ◽  
Mohsen Mokhtarian

Abstract In this study, two intelligent tools of genetic algorithm (GA) and artificial neural network (ANN) were employed to use experimental data to predict equilibrium moisture content (EMC) of Persian pistachio powder. Initially the moisture sorption isotherms of pistachio powder were determined by gravimetric method at different temperatures (15, 25, 35 and 40°C) and constant relative humidity’s (0.11, 0.23, 0.36, 0.49, 0.62, 0.75 and 0.88 aw values) and then traditional mathematical models including BET, Iglesias and Chirife, GAB, Caurie and Freundlich were used to check the fitness of experimental data. Later the experimental data were compared with similar data obtained from GA and ANN models. The overall results showed that the Caurie model had high performance to predict EMC and revealed that GA model had greater accuracy to predict EMC of pistachio powder with very high R2 values (equal to 0.9996).


Author(s):  
André L. D. Goneli ◽  
Paulo C. Corrêa ◽  
Gabriel H. H. de Oliveira ◽  
Osvaldo Resende ◽  
Munir Mauad

ABSTRACT Sorption isotherms are of great importance in post-harvest procedures, especially for predicting drying and storage, which help to establish the final moisture content of the product under certain environmental condition. Hysteresis is a phenomenon that occurs due to the difference between adsorption and desorption curves, which aids the evaluation of chemical and microbiological deteriorations, indicating the stability of stored products. Moisture sorption isotherms of castor beans were determined and hysteresis was analyzed. Static gravimetric technique at different temperatures (25, 35, 45 and 55 ± 1 °C) was used. Saturated salt solutions in the range of 37-87% ± 2% were utilized to create the required controlled relative humidity environment. Equilibrium moisture content data were correlated by different mathematical models and the Modified Halsey model presented good adjustment for the data, according to statistical procedures. Hysteresis between adsorption and desorption isotherms is present over the range of 0.2-0.9 of water activity, regardless of the temperature. This phenomenon decreases with temperature increase.


2019 ◽  
Vol 62 (1) ◽  
pp. 105-114
Author(s):  
Xiuping Jiang ◽  
Xiuping Jiang ◽  
Huanhuan Li ◽  
Hosahalli S. Ramaswamy ◽  
Songming Zhu ◽  
...  

Abstract. Understanding of moisture sorption isotherms (MSI) is critical for predicting the stability of wood during handling, transport, and storage. The aim of this study was to evaluate the adsorption and desorption isotherm characteristics of high-pressure (HP) treated paulownia wood and to identify the best-fitting model to describe its sorption behavior. The equilibrium moisture contents (EMCs) of HP-treated paulownia wood were obtained using a static gravimetric method under different storage conditions: three temperatures (20°C, 30°C, and 40°C) and five water activity (aw) levels (0.32 to 0.95). Results showed that HP parameters did not significantly affect the MSI trend of treated groups. Eight modified models (modified Chung-Pfost, modified Henderson, modified Oswin, modified Halsey, Chen-Clayton, Guggenheim-Anderson-de Boer (GAB), simply modified GAB, and Peleg) were fitted to the experimental data. The Chen-Clayton model (temperature-dependent) produced randomized residuals and the best prediction performance for both adsorption and desorption among all models. Net isosteric heat of adsorption and desorption decreased from 7.55 to 4.84 kJ mol-1 and from 18.1 to 12.2 kJ mol-1, respectively, with an increase in EMC from 7.5% to 10%. The isosteric temperature (Tß) was 352 K for adsorption and 335 K for desorption, between which all the adsorption and desorption reactions proceeded at the same rate. All thermodynamic functions were adequately characterized by a power law model. Keywords: Equilibrium moisture content, High-pressure treatment, Modeling, Moisture sorption isotherm, Paulownia wood, Temperature, Thermodynamic analysis.


Sign in / Sign up

Export Citation Format

Share Document