Intramyocellular fat storage in metabolic diseases

Author(s):  
Claire Laurens ◽  
Cedric Moro

AbstractOver the past decades, obesity and its metabolic co-morbidities such as type 2 diabetes (T2D) developed to reach an endemic scale. However, the mechanisms leading to the development of T2D are still poorly understood. One main predictor for T2D seems to be lipid accumulation in “non-adipose” tissues, best known as ectopic lipid storage. A growing body of data suggests that these lipids may play a role in impairing insulin action in metabolic tissues, such as liver and skeletal muscle. This review aims to discuss recent literature linking ectopic lipid storage and insulin resistance, with emphasis on lipid deposition in skeletal muscle. The link between skeletal muscle lipid content and insulin sensitivity, as well as the mechanisms of lipid-induced insulin resistance and potential therapeutic strategies to alleviate lipotoxic lipid pressure in skeletal muscle will be discussed.

Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 249 ◽  
Author(s):  
Xuehan Li ◽  
Zemin Li ◽  
Minghua Zhao ◽  
Yingxi Nie ◽  
Pingsheng Liu ◽  
...  

The lipid droplet (LD) is an organelle enveloped by a monolayer phospholipid membrane with a core of neutral lipids, which is conserved from bacteria to humans. The available evidence suggests that the LD is essential to maintaining lipid homeostasis in almost all organisms. As a consequence, LDs also play an important role in pathological metabolic processes involving the ectopic storage of neutral lipids, including type 2 diabetes mellitus (T2DM), atherosclerosis, steatosis, and obesity. The degree of insulin resistance in T2DM patients is positively correlated with the size of skeletal muscle LDs. Aerobic exercise can reduce the occurrence and development of various metabolic diseases. However, trained athletes accumulate lipids in their skeletal muscle, and LD size in their muscle tissue is positively correlated with insulin sensitivity. This phenomenon is called the athlete’s paradox. This review will summarize previous studies on the relationship between LDs in skeletal muscle and metabolic diseases and will discuss the paradox at the level of LDs.


2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S10
Author(s):  
C R. Bruce ◽  
M J. Anderson ◽  
A L. Carey ◽  
D G. Newman ◽  
A Bonen ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1748-P ◽  
Author(s):  
FENGYUAN HUANG ◽  
KEVIN YANG ◽  
KAMALAMMA SAJA ◽  
YICHENG HUANG ◽  
QINGQIANG LONG ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Liyan Fan ◽  
David R Sweet ◽  
Domenick A Prosdocimo ◽  
Komal S Keerthy ◽  
Mukesh K Jain

Abstract Metabolic diseases and their serious sequelae such as non-alcoholic fatty liver disease (NAFLD) pose a substantial clinical burden. It is now well recognized that skeletal muscle is a major site for the metabolism of all major macronutrients, and derangements in these muscle processes significantly contribute to metabolic disease. Studies over the last 15 years have identified the transcription factor Krüppel-like factor 15 (KLF15) as an important regulator and effector of metabolic processes across various tissues, and furthermore, genome-wide studies have identified human KLF15 variants with increased body mass index and diabetes. Given the importance of skeletal muscle in maintaining metabolic homeostasis, we generated a skeletal muscle specific KLF15 knockout (K15-SKO) mouse to study the role of skeletal muscle KLF15 in regulating systemic metabolism. We found that this animal is prone to developing obesity and insulin resistance at baseline, a phenotype that is greatly exacerbated in response to high fat diet (HFD). Strikingly, K15-SKO mice show a propensity toward developing NAFLD, as demonstrated by increased micro- and macrovesicular steatosis, hepatocellular ballooning, increased hepatic fatty acid and triglyceride deposition, and elevated Cd36 expression. A potential cause of NAFLD is the accumulation of excess lipids and lipid intermediates due to defects in the lipid flux pathway in extrahepatic tissues. Indeed, we see defects in the expression of genes involved in the carnitine shuttle and a paucity of long-chain acylcarnitines in K15-SKO skeletal muscle. Furthermore, RNA sequencing of skeletal muscle from K15-SKO mice shows downregulation in a number of pathways involved in lipid handling. This indicates that KLF15 serves as a novel extrahepatic molecular regulator of hepatic health. It has been previously shown that a diet rich in short-chain fatty acids (SCFA) can bypass defects in lipid handling and ultimately improve metabolic health. To explore this therapeutic avenue, we gave K15-SKO mice either normal chow (NC) or a SCFA-rich diet for 7 weeks. We observed decreased weight gain and improved glucose homeostasis in SCFA-rich diet fed mice. In addition to being a preventative strategy, SCFA-rich diets may also serve as a potential therapy to rescue from metabolic disease. To this end, we gave K15-SKO mice HFD for 5 weeks followed by 7 weeks of either NC or SCFA-rich diet. We observed that providing SCFAs can improve metabolic health and ameliorate the phenotype seen due to defects in skeletal muscle lipid handling: mice given SCFA-rich diet following HFD had significantly decreased weight gain and improved insulin sensitivity. These studies demonstrate that skeletal muscle KLF15 serves as an important regulator of lipid flux and hepatic health, and that SCFA-rich diets are a promising candidate for metabolic disease resultant of impaired lipid handling.


2012 ◽  
Vol 97 (7) ◽  
pp. E1182-E1186 ◽  
Author(s):  
Katherine H. Ingram ◽  
Helliner Hill ◽  
Douglas R. Moellering ◽  
Bradford G. Hill ◽  
Cristina Lara-Castro ◽  
...  

Abstract Objective: The relationships among skeletal muscle lipid peroxidation, intramyocellular lipid content (IMCL), and insulin sensitivity were evaluated in nine insulin-sensitive (IS), 13 insulin-resistant (IR), and 10 adults with type 2 diabetes (T2DM). Design: Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp [glucose disposal rate (GDR)]. Lipid peroxidation was assessed by 4-hydroxynonenal (HNE)-protein adducts and general oxidative stress by protein carbonyl content. All patients were sedentary. Results: Protein-HNE adducts were elevated 1.6-fold in T2DM compared with IS adults, whereas IR showed intermediate levels of HNE-modified proteins. Protein-HNE adducts correlated with GDR, waist circumference, and body mass index. IMCL was increased by 4.0- and 1.9-fold in T2DM and IR patients, respectively, compared with IS, and was correlated with GDR and waist circumference but not BMI. Protein carbonyls were not different among groups and did not correlate with any of the measured variables. Correlations were detected between IMCL and protein-HNE. Conclusion: Our data show for the first time that skeletal muscle protein-HNE adducts are related to the severity of insulin resistance in sedentary adults. These results suggest that muscle lipid peroxidation could be involved in the development of insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document