scholarly journals SUN-653 Bypassing Skeletal Muscle Lipid Handling Deficiencies as a Therapy for Metabolic Disease

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Liyan Fan ◽  
David R Sweet ◽  
Domenick A Prosdocimo ◽  
Komal S Keerthy ◽  
Mukesh K Jain

Abstract Metabolic diseases and their serious sequelae such as non-alcoholic fatty liver disease (NAFLD) pose a substantial clinical burden. It is now well recognized that skeletal muscle is a major site for the metabolism of all major macronutrients, and derangements in these muscle processes significantly contribute to metabolic disease. Studies over the last 15 years have identified the transcription factor Krüppel-like factor 15 (KLF15) as an important regulator and effector of metabolic processes across various tissues, and furthermore, genome-wide studies have identified human KLF15 variants with increased body mass index and diabetes. Given the importance of skeletal muscle in maintaining metabolic homeostasis, we generated a skeletal muscle specific KLF15 knockout (K15-SKO) mouse to study the role of skeletal muscle KLF15 in regulating systemic metabolism. We found that this animal is prone to developing obesity and insulin resistance at baseline, a phenotype that is greatly exacerbated in response to high fat diet (HFD). Strikingly, K15-SKO mice show a propensity toward developing NAFLD, as demonstrated by increased micro- and macrovesicular steatosis, hepatocellular ballooning, increased hepatic fatty acid and triglyceride deposition, and elevated Cd36 expression. A potential cause of NAFLD is the accumulation of excess lipids and lipid intermediates due to defects in the lipid flux pathway in extrahepatic tissues. Indeed, we see defects in the expression of genes involved in the carnitine shuttle and a paucity of long-chain acylcarnitines in K15-SKO skeletal muscle. Furthermore, RNA sequencing of skeletal muscle from K15-SKO mice shows downregulation in a number of pathways involved in lipid handling. This indicates that KLF15 serves as a novel extrahepatic molecular regulator of hepatic health. It has been previously shown that a diet rich in short-chain fatty acids (SCFA) can bypass defects in lipid handling and ultimately improve metabolic health. To explore this therapeutic avenue, we gave K15-SKO mice either normal chow (NC) or a SCFA-rich diet for 7 weeks. We observed decreased weight gain and improved glucose homeostasis in SCFA-rich diet fed mice. In addition to being a preventative strategy, SCFA-rich diets may also serve as a potential therapy to rescue from metabolic disease. To this end, we gave K15-SKO mice HFD for 5 weeks followed by 7 weeks of either NC or SCFA-rich diet. We observed that providing SCFAs can improve metabolic health and ameliorate the phenotype seen due to defects in skeletal muscle lipid handling: mice given SCFA-rich diet following HFD had significantly decreased weight gain and improved insulin sensitivity. These studies demonstrate that skeletal muscle KLF15 serves as an important regulator of lipid flux and hepatic health, and that SCFA-rich diets are a promising candidate for metabolic disease resultant of impaired lipid handling.

Author(s):  
Claire Laurens ◽  
Cedric Moro

AbstractOver the past decades, obesity and its metabolic co-morbidities such as type 2 diabetes (T2D) developed to reach an endemic scale. However, the mechanisms leading to the development of T2D are still poorly understood. One main predictor for T2D seems to be lipid accumulation in “non-adipose” tissues, best known as ectopic lipid storage. A growing body of data suggests that these lipids may play a role in impairing insulin action in metabolic tissues, such as liver and skeletal muscle. This review aims to discuss recent literature linking ectopic lipid storage and insulin resistance, with emphasis on lipid deposition in skeletal muscle. The link between skeletal muscle lipid content and insulin sensitivity, as well as the mechanisms of lipid-induced insulin resistance and potential therapeutic strategies to alleviate lipotoxic lipid pressure in skeletal muscle will be discussed.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 249 ◽  
Author(s):  
Xuehan Li ◽  
Zemin Li ◽  
Minghua Zhao ◽  
Yingxi Nie ◽  
Pingsheng Liu ◽  
...  

The lipid droplet (LD) is an organelle enveloped by a monolayer phospholipid membrane with a core of neutral lipids, which is conserved from bacteria to humans. The available evidence suggests that the LD is essential to maintaining lipid homeostasis in almost all organisms. As a consequence, LDs also play an important role in pathological metabolic processes involving the ectopic storage of neutral lipids, including type 2 diabetes mellitus (T2DM), atherosclerosis, steatosis, and obesity. The degree of insulin resistance in T2DM patients is positively correlated with the size of skeletal muscle LDs. Aerobic exercise can reduce the occurrence and development of various metabolic diseases. However, trained athletes accumulate lipids in their skeletal muscle, and LD size in their muscle tissue is positively correlated with insulin sensitivity. This phenomenon is called the athlete’s paradox. This review will summarize previous studies on the relationship between LDs in skeletal muscle and metabolic diseases and will discuss the paradox at the level of LDs.


2011 ◽  
Vol 53 (3) ◽  
pp. 577-586 ◽  
Author(s):  
Jeffrey D. Browning ◽  
Jeannie Baxter ◽  
Santhosh Satapati ◽  
Shawn C. Burgess

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 682
Author(s):  
Serena Coppola ◽  
Carmen Avagliano ◽  
Antonio Calignano ◽  
Roberto Berni Canani

Worldwide obesity is a public health concern that has reached pandemic levels. Obesity is the major predisposing factor to comorbidities, including type 2 diabetes, cardiovascular diseases, dyslipidemia, and non-alcoholic fatty liver disease. The common forms of obesity are multifactorial and derive from a complex interplay of environmental changes and the individual genetic predisposition. Increasing evidence suggest a pivotal role played by alterations of gut microbiota (GM) that could represent the causative link between environmental factors and onset of obesity. The beneficial effects of GM are mainly mediated by the secretion of various metabolites. Short-chain fatty acids (SCFAs) acetate, propionate and butyrate are small organic metabolites produced by fermentation of dietary fibers and resistant starch with vast beneficial effects in energy metabolism, intestinal homeostasis and immune responses regulation. An aberrant production of SCFAs has emerged in obesity and metabolic diseases. Among SCFAs, butyrate emerged because it might have a potential in alleviating obesity and related comorbidities. Here we reviewed the preclinical and clinical data that contribute to explain the role of butyrate in this context, highlighting its crucial contribute in the diet-GM-host health axis.


2012 ◽  
Vol 303 (10) ◽  
pp. E1222-E1233 ◽  
Author(s):  
Assunta Lombardi ◽  
Rita De Matteis ◽  
Maria Moreno ◽  
Laura Napolitano ◽  
Rosa Anna Busiello ◽  
...  

Iodothyronines such as triiodothyronine (T3) and 3,5-diiodothyronine (T2) influence energy expenditure and lipid metabolism. Skeletal muscle contributes significantly to energy homeostasis, and the above iodothyronines are known to act on this tissue. However, little is known about the cellular/molecular events underlying the effects of T3 and T2 on skeletal muscle lipid handling. Since FAT/CD36 is involved in the utilization of free fatty acids by skeletal muscle, specifically in their import into that tissue and presumably their oxidation at the mitochondrial level, we hypothesized that related changes in lipid handling and in FAT/CD36 expression and subcellular redistribution would occur due to hypothyroidism and to T3 or T2 administration to hypothyroid rats. In gastrocnemius muscles isolated from hypothyroid rats, FAT/CD36 was upregulated (mRNA levels and total tissue, sarcolemmal, and mitochondrial protein levels). Administration of either T3 or T2 to hypothyroid rats resulted in 1) little or no change in FAT/CD36 mRNA level, 2) a decreased total FAT/CD36 protein level, and 3) further increases in FAT/CD36 protein level in sarcolemma and mitochondria. Thus, the main effect of each iodothyronine seemed to be exerted at the level of FAT/CD36 cellular distribution. The effect of further increases in FAT/CD36 protein level in sarcolemma and mitochondria was already evident at 1 h after iodothyronine administration. Each iodothyronine increased the mitochondrial fatty acid oxidation rate. However, the mechanisms underlying their rapid effects seem to differ; T2 and T3 each induce FAT/CD36 translocation to mitochondria, but only T2 induces increases in carnitine palmitoyl transferase system activity and in the mitochondrial substrate oxidation rate.


2011 ◽  
Vol 300 (4) ◽  
pp. R835-R843 ◽  
Author(s):  
Donato A. Rivas ◽  
Sarah J. Lessard ◽  
Misato Saito ◽  
Anna M. Friedhuber ◽  
Lauren G. Koch ◽  
...  

Chronic metabolic diseases develop from the complex interaction of environmental and genetic factors, although the extent to which each contributes to these disorders is unknown. Here, we test the hypothesis that artificial selection for low intrinsic aerobic running capacity is associated with reduced skeletal muscle metabolism and impaired metabolic health. Rat models for low- (LCR) and high- (HCR) intrinsic running capacity were derived from genetically heterogeneous N:NIH stock for 20 generations. Artificial selection produced a 530% difference in running capacity between LCR/HCR, which was associated with significant functional differences in glucose and lipid handling by skeletal muscle, as assessed by hindlimb perfusion. LCR had reduced rates of skeletal muscle glucose uptake (∼30%; P = 0.04), glucose oxidation (∼50%; P = 0.04), and lipid oxidation (∼40%; P = 0.02). Artificial selection for low aerobic capacity was also linked with reduced molecular signaling, decreased muscle glycogen, and triglyceride storage, and a lower mitochondrial content in skeletal muscle, with the most profound changes to these parameters evident in white rather than red muscle. We show that a low intrinsic aerobic running capacity confers reduced insulin sensitivity in skeletal muscle and is associated with impaired markers of metabolic health compared with high intrinsic running capacity. Furthermore, selection for high running capacity, in the absence of exercise training, endows increased skeletal muscle insulin sensitivity and oxidative capacity in specifically white muscle rather than red muscle. These data provide evidence that differences in white muscle may have a role in the divergent aerobic capacity observed in this generation of LCR/HCR.


1998 ◽  
Vol 275 (2) ◽  
pp. E300-E309 ◽  
Author(s):  
Sandra J. Peters ◽  
David J. Dyck ◽  
Arend Bonen ◽  
Lawrence L. Spriet

The effects of physiological (0, 0.1, 2.5, and 10 nM) and pharmacological (200 nM) epinephrine concentrations on resting skeletal muscle lipid metabolism were investigated with the use of incubated rat epitrochlearis (EPT), flexor digitorum brevis (FDB), and soleus (SOL) muscles. Muscles were chosen to reflect a range of oxidative capacities: SOL > EPT > FDB. The muscles were pulsed with [1-14C]palmitate and chased with [9,10-3H]palmitate. Incorporation and loss of the labeled palmitate from the triacylglycerol pool (as well as mono- and diacylglycerol, phospholipid, and fatty acid pools) permitted the simultaneous estimation of lipid hydrolysis and synthesis. Endogenous and exogenous fat oxidation was quantified by14CO2and3H2O production, respectively. Triacylglycerol breakdown was elevated above control at all epinephrine concentrations in the oxidative SOL muscle, at 2.5 and 200 nM (at 10 nM, P= 0.066) in the FDB, and only at 200 nM epinephrine in the EPT. Epinephrine stimulated glycogen breakdown in the EPT at all concentrations but only at 10 and 200 nM in the FDB and had no effect in the SOL. We further characterized muscle lipid hydrolysis potential and measured total hormone-sensitive lipase content by Western blotting (SOL > FDB > EPT). This study demonstrated that physiological levels of epinephrine cause measurable increases in triacylglycerol hydrolysis at rest in oxidative but not in glycolytic muscle, with no change in the rate of lipid synthesis or oxidation. Furthermore, epinephrine caused differential stimulation of carbohydrate and fat metabolism in glycolytic vs. oxidative muscle. Epinephrine preferentially stimulated glycogen breakdown over triacylglycerol hydrolysis in the glycolytic EPT muscle. Conversely, in the oxidative SOL muscle, epinephrine caused an increase in endogenous lipid hydrolysis over glycogen breakdown.


2011 ◽  
Vol 10 (10) ◽  
pp. 4757-4768 ◽  
Author(s):  
Huina Zhang ◽  
Yang Wang ◽  
Jing Li ◽  
Jinhai Yu ◽  
Jing Pu ◽  
...  

2010 ◽  
Vol 213 (10) ◽  
pp. 1676-1684 ◽  
Author(s):  
S. J. Trumble ◽  
S. R. Noren ◽  
L. A. Cornick ◽  
T. J. Hawke ◽  
S. B. Kanatous

Sign in / Sign up

Export Citation Format

Share Document