Modeling the Hot Deformation Behaviors of As-Extruded 7075 Aluminum Alloy by an Artificial Neural Network with Back-Propagation Algorithm

2017 ◽  
Vol 36 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Guo-zheng Quan ◽  
Zhen-yu Zou ◽  
Tong Wang ◽  
Bo Liu ◽  
Jun-chao Li

AbstractIn order to investigate the hot deformation behaviors of as-extruded 7075 aluminum alloy, the isothermal compressive tests were conducted at the temperatures of 573, 623, 673 and 723 K and the strain rates of 0.01, 0.1, 1 and 10 s−1 on a Gleeble 1500 thermo-mechanical simulator. The flow behaviors showing complex characteristics are sensitive to strain, strain rate and temperature. The effects of strain, temperature and strain rate on flow stress were analyzed and dynamic recrystallization (DRX)-type softening characteristics of the flow behaviors with single peak were identified. An artificial neural network (ANN) with back-propagation (BP) algorithm was developed to deal with the complex deformation behavior characteristics based on the experimental data. The performance of ANN model has been evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). A comparative study on Arrhenius-type constitutive equation and ANN model for as-extruded 7075 aluminum alloy was conducted. Finally, the ANN model was successfully applied to the development of processing map and implanted into finite element simulation. The results have sufficiently articulated that the well-trained ANN model with BP algorithm has excellent capability to deal with the complex flow behaviors of as-extruded 7075 aluminum alloy and has great application potentiality in hot deformation processes.

2010 ◽  
Vol 146-147 ◽  
pp. 720-723
Author(s):  
Yong Cheng Lin ◽  
Xiao Min Chen ◽  
Yu Chi Xia

The compressive deformation experiments of 2124-T851 aluminum alloy were carried out over a wide range of temperature and strain rate. An artificial neural network (ANN) model is developed for the analysis and simulation of the correlation between the flow behaviors of hot compressed 2124-T851 aluminum alloy and working conditions. The input parameters of the model consist of strain rate, forming temperature and deformation degree whereas flow stress is the output. A three layer feed-forward network with 15 neurons in a single hidden layer and back propagation (BP) learning algorithm has been employed. Good performance of the ANN model is achieved. The predicted results are consistent with what is expected from fundamental theory of hot compression deformation, which indicates that the excellent capability of the developed ANN model to predict the flow stress level, the strain hardening and flow softening stages is well evidenced.


2011 ◽  
Vol 695 ◽  
pp. 361-364 ◽  
Author(s):  
Ying Han ◽  
Guan Jun Qiao ◽  
Dong Na Yan ◽  
De Ning Zou

The hot deformation behavior of super 13Cr martensitic stainless steel was investigated using artificial neural network (ANN). Hot compression tests were carried out at the temperature range of 950°C to 1200°C and strain rate range of 0.1–50s–1at an interval of an order of magnitude. Based on the limited experimental data, the ANN model for the constitutive relationship existed between flow stress and strain, strain rate and deformation temperature was developed by back-propagation (BP) neural network method. A three layer structured network with one hidden layer and ten hidden neurons was trained and the normalization method was employed in training for avoiding over fitting. Modeling results show that the developed ANN model can efficiently predict the flow stress of the steel and reflect the hot deformation behavior in the whole deforming process.


This study examines the potential of artificial neural network (ANN) to predict Total Volatile Organic Compounds (TVOCs) released via decomposition of local food wastes. To mimic the decomposition process, a bioreactor was designed to stimulate the food waste storage condition. The food waste was modeled based on the waste composition from a residential area. A feed forward multilayer back propagation (Levenberg – Marquardt training algorithm) was then developed to predict the TVOCs. The findings indicate that a two-layer artificial neuron network (ANN) with six input variables and these include (outside and inside temperature, pH, moisture content, oxygen level, relative humidity) with a total of eighty eight (88) data are used for the modeling purpose. The network with the highest regression coefficient (R) is 0.9967 and the lowest Mean Square Error (MSE) is 0.00012 (nearest to the value of zero) has been selected as the Optimum ANN model. The findings of this study suggest the most suitable ANN model that befits the research objective is ANN model with one (1) hidden layer with fifteen (15) hidden neurons. Additionally, it is critical to note that the results from the experiment and predicted model are in good agreement.


2014 ◽  
Vol 668-669 ◽  
pp. 994-998
Author(s):  
Jin Ting Ding ◽  
Jie He

This study aims at providing a back propagation-artificial neural network (BP-ANN) model on forecasting the water quality change trend of Qiantang River basin. To achieve this goal, a three-layer (one input layer, one hidden layer, and one output layer) BP-ANN with the LM regularization training algorithm was used. Water quality variables such as pH value, dissolved oxygen, permanganate index and ammonia-nitrogen was selected as the input data to obtain the output of the neural network. The ANN structure with 17 hidden neurons obtained the best selection. The comparison between the original measured and forecast values of the ANN model shows that the relative errors, with a few exceptions, were lower than 9%. The results indicated that the BP neural network can be satisfactorily applied to forecast precise water quality parameters and is suitable for pre-alarm of water quality trend.


2006 ◽  
Vol 129 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Sumantra Mandal ◽  
P. V. Sivaprasad ◽  
S. Venugopal

A model is developed to predict the constitutive flow behavior of as cast 304 stainless steel during hot deformation using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from hot compression tests in the temperature range 1023-1523K, strain range 0.1-0.5, and strain rate range 10−3-102s−1 are employed to develop the model. A three-layer feed-forward ANN is trained with standard back propagation and some upgraded algorithms like resilient propagation (Rprop) and superSAB. The performances of these algorithms are evaluated using a wide variety of standard statistical indices. The results of this study show that Rprop algorithm performs better as compared to others and thereby considered as the most efficient algorithm for the present study. It has been shown that the developed ANN model can efficiently and accurately predict the hot deformation behavior of as cast 304 stainless steel. Finally, an attempt has been made to quantify the extrapolation ability of the developed network.


2018 ◽  
Vol 3 (8) ◽  
pp. 40
Author(s):  
Mohamed Zakaulla ◽  
Anteneh Mohammed Tahir ◽  
Seid Endro ◽  
Shemelis Nesibu Wodaeneh ◽  
Lulseged Belay

In this study, the tribological properties of TiC particle and MWCNTs reinforced aluminium (Al7475) hybrid composite synthesized by stir casting method were investigated by experimental and artificial neural network (ANN) model. Al7475 metal matrix composites was produced with different wt% of TiC and MWCNTs. The composite samples were tested at 0.42 ms- 1, 0.84 ms- 1 and 1.68 ms- 1 under three different loads  (10N, 20N and 40N). The results indicated that Al7475+10%TiC+2%MWCNTs composite exhibit lower wear rate and reduced coefficient of friction in compare to other samples. TiC percent, MWCNTs percent, applied weight, sliding speed and Time were used as input values for the theoretical prediction model of the composite. coefficient of friction and Wear loss were the two outputs developed from proposed network. Back propagation neural network with 5 – 6 – 2 architecture that uses Levenberg –Marquardt training algorithm is used to predict the coefficient of friction and wear loss. After comparing experimental and ANNs predicted results it was noted that R2 was 0.992 for wear loss and 0.980 for coefficient of friction. This indicated that developed predicted model has a high state of reliability.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


Sign in / Sign up

Export Citation Format

Share Document