scholarly journals Oscillatory MHD Convective Flow of Second Order Fluid Through Porous Medium in a Vertical Rotating Channel in Slip-Flow Regime with Heat Radiation

2015 ◽  
Vol 20 (1) ◽  
pp. 33-52 ◽  
Author(s):  
B.P. Garg ◽  
K.D. Singh ◽  
A.K. Bansal

Abstract An analysis of an oscillatory magnetohydrodynamic (MHD) convective flow of a second order (viscoelastic), incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter λ , Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation ω .

2013 ◽  
Vol 18 (4) ◽  
pp. 1237-1248 ◽  
Author(s):  
K.D. Singh

Abstract In this paper an oscillatory flow of a viscoelastic, incompressible and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel plates is discussed. One of these plates is subjected to a slip-flow condition and the other to a no-slip condition. The pressure gradient in the channel oscillates with time. A magnetic field of uniform strength is applied in the direction perpendicular to the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature difference of the two plates is also assumed high enough to induce heat transfer due to radiation. A closed form analytical solution to the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters entering into the problem. A number of particular cases have been shown by dotted curves in the figures. During the analysis it is found that the physical and the mathematical formulations of the problems by Makinde and Mhone (2005), Mehmood and Ali (2007), Kumar et al. (2010) and Choudhury and Das (2012) are not correct. The correct solutions to all these important oscillatory flow problems are deduced.


2018 ◽  
Vol 23 (2) ◽  
pp. 365-384 ◽  
Author(s):  
P.K. Gaur ◽  
R.P. Sharma ◽  
A.K. Jha

Abstract Investigation of an MHD convective flow of viscous, incompressible and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is carried out. Forchheimer-Brinkman extended Darcy model is assumed to simulate momentum transfer within the porous medium. A magnetic field of uniform strength is applied normal to the plates. The analytical results are evaluated numerically and the presented graphically to discuss in detail the effects of different parameter entering into the problem.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Rita Choudhury ◽  
Utpal Jyoti Das

The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.


2014 ◽  
Vol 11 (2) ◽  
pp. 147-156 ◽  
Author(s):  
M.C Raju ◽  
S.V.K Varma

The problem of unsteady MHD free convective, incompressible electrically conducting, non-Newtonian fluid through porous medium bounded by an infinite porous plate in the presence of constant suction has been studied. A magnetic field of uniform strength is assumed to be applied normal to the plate. The equations governing the fluid flow which are highly nonlinear are reduced to linear by using perturbation method and have been solved subject to the relevant boundary conditions. It is noted that the velocity of the fluid is increased as Soret number and suction parameter increase, whereas reverse phenomenon is observed in case of magnetic field strength and sink strength. DOI: http://dx.doi.org/10.3329/jname.v11i2.17563


Sign in / Sign up

Export Citation Format

Share Document