Effect of the Operating Conditions on the Growth of Carbonaceous Nanomaterials over Stainless Steel Foams. Kinetic and Characterization Studies

Author(s):  
Nieves Latorre ◽  
Fernando Cazaña ◽  
Víctor Sebastián ◽  
Carlos Royo ◽  
Eva Romeo ◽  
...  

Abstract This work is an advance on the development of structured catalytic reactors. Here, we present the results of the effect of the main operational variables (reaction temperature, % H2 and % C2H6) on the kinetics of carbonaceous nanomaterials (CNMs) formation by catalytic decomposition of ethane over stainless steel foams. Some of the main drawback problems that occur during the operation of chemical structured reactors are related to the preparation of long term stable coatings. The washcoating is the most used technique to deposit the catalytic layer over the substrate. The application of this procedure is quite complex in the case of geometries such as foams or cloths. In the case of the deposition of layers of carbonaceous nanomaterials, an alternative route, avoiding the washcoating, is their direct growth by catalytic decomposition of light hydrocarbons over the surface of the metallic substrate. In the case of structured steel foams, the substrate already contains the catalytic active phases for this reaction, like Fe and Ni, among of the minor components (Cr, Mn, Mo) that can act as promotors/stabilizers. The nanomaterials obtained after reaction were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results indicate that there is a maximum, obtained at ca. 900 °C, 33.3 % of C2H6 and 1.7 % of H2, in the quality of the carbonaceous nanomaterials grown. Under these conditions, the CNMs consist mainly of few layer graphene (FLG) and graphite nanolayers (GNL) encapsulating the metallic nanoparticles. In addition, the kinetic results indicate the existence of another optimum, at ca. 800 °C, 33.3 % of C2H6 and 1.7 % of H2, in the productivity to the carbonaceous nanomaterials. The existence of these optimums is due to the driving force for the diffusion of the carbon atoms through the Fe-Ni nanoparticles (NPs) obtained at high temperatures (e. g. above 800 °C) caused by the competence between two opposite phenomena: the increase of the rate of carbon diffusion through the metallic nanoparticles of Fe-Ni and the deactivation of these nanoparticles. The deactivation is the consequence of the encapsulation and reconstruction of the nanoparticles during the formation of the several types of CNMs. The evolution of the carbon mass during the reaction time was analyzed using a phenomenological kinetic model that takes into account the main stages involved during the formation of carbonaceous nanomaterials: hydrocarbon decomposition, carburization, diffusion, precipitation and deactivation. The results obtained from the kinetic model, along with the characterization results, enable quantify the influence of the operating variables on each stage of the carbonaceous nanomaterial formation and therefore open the way to optimize the process.

Author(s):  
M. Pan

It has been known for many years that materials such as zeolites, polymers, and biological specimens have crystalline structures that are vulnerable to electron beam irradiation. This radiation damage severely restrains the use of high resolution electron microscopy (HREM). As a result, structural characterization of these materials using HREM techniques becomes difficult and challenging. The emergence of slow-scan CCD cameras in recent years has made it possible to record high resolution (∽2Å) structural images with low beam intensity before any apparent structural damage occurs. Among the many ideal properties of slow-scan CCD cameras, the low readout noise and digital recording allow for low-dose HREM to be carried out in an efficient and quantitative way. For example, the image quality (or resolution) can be readily evaluated on-line at the microscope and this information can then be used to optimize the operating conditions, thus ensuring that high quality images are recorded. Since slow-scan CCD cameras output (undistorted) digital data within the large dynamic range (103-104), they are ideal for quantitative electron diffraction and microscopy.


Alloy Digest ◽  
1997 ◽  
Vol 46 (4) ◽  

Abstract Remanit 4306 is a low-carbon chromium nickel austenitic stainless steel that is superior in corrosion resistance to type 302 (see Alloy Digest SS-99, revised September 1998). Due to its low carbon content, Remanit 4306 is intergranular corrosion resistant under continuous operating conditions up to 350 C (652 F). This grade is particular suitable for high degrees of cold working and for sequential drawing. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-679. Producer or source: Thyssen Stahl AG.


1992 ◽  
Vol 25 (10) ◽  
pp. 149-162 ◽  
Author(s):  
V. L. Pillay ◽  
C. A. Buckley

Cross-flow microfiltration (CFMF) has potentially wide application in the processing of industrial and domestic waste waters. Optimum design and operation of CFMF systems necessitates a knowledge of the characteristic system behaviour, and an understanding of the mechanisms governing this behaviour. This paper is a contribution towards the elucidation and understanding of the behaviour of a woven fibre CFMF operated in the turbulent flow regime. The characteristic flux-time curve and effects of operating variables on flux are presented for a limestone suspension cross-flow filtered in a 25 mm woven fibre tube. The phenomena contributing to the shape of the flux-time curve are discussed. A model of the mechanisms governing cake growth and limit is presented. Predicted steady-state fluxes show a notably good correspondence with experimentally measured values. It is also found that the flux may not be uniquely defined by the operating conditions, but may also be a function of the operating path taken to reach the operating point. This is of significance in the start-up and operation of CFMF units.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 135
Author(s):  
Kathleen Jaffré ◽  
Benoît Ter-Ovanessian ◽  
Hiroshi Abe ◽  
Nicolas Mary ◽  
Bernard Normand ◽  
...  

The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel.


Author(s):  
Shuo-Jen Lee ◽  
Kung-Ting Yang ◽  
Yu-Ming Lee ◽  
Chi-Yuan Lee

In this research, electrochemical impedance spectroscopy is employed to monitor the resistance of a fuel cell during operation with different operating conditions and different materials for the bipolar plates. The operating condition variables are cell humidity, pure oxygen or air as oxidizer, and current density. Three groups of single cells were tested: a graphite cell, a stainless steel cell (treated and original), and a thin, small, treated stainless steel cell. A treated cell here means using an electrochemical treatment to improve bipolar plate anticorrosion capability. From the results, the ohmic resistance of a fully humidified treated stainless steel fuel cell is 0.28 Ω cm2. Under the same operating conditions, the ohmic resistance of the graphite and the original fuel cell are each 0.1 Ω cm2 and that of the small treated cell is 0.3 Ω cm2. Cell humidity has a greater influence on resistance than does the choice of oxidizer; furthermore, resistance variation due to humidity effects is more serious with air support. From the above results, fuel cells fundamental phenomenon such as ohmic resistance, charge transfer resistance, and mass transport resistance under different operating conditions could be evaluated.


Author(s):  
S H Mok ◽  
D G Gorman

Maintenance of offshore drilling mud pumps is normally based on running hours. It is generally accepted, however, that time does not provide an accurate means of scheduling maintenance, given the varying operating conditions of the reciprocating mud pumps. The energy expended at the interaction of sliding surfaces is hypothesized to be a better alternative. The effects of operating variables on wear rates are investigated. A Taguchi experimental design was used to identify those factors that significantly affect wear. Within the confines of an experimental test rig, the normal load and abrasive sand content was found to have a significant effect on the specific wear rate of nitrile rubber sliding on steel in drilling fluid.


2016 ◽  
Vol 40 ◽  
pp. 128-135 ◽  
Author(s):  
Qing Quan Guo ◽  
Xin Fu Ma ◽  
Hai Xiang Ma ◽  
Yao Lu

The preparation of size- and shape- controlled metallic nanoparticles using biological methodologies is a noticeably stimulating research field due to their unique physicochemical properties. In this paper, biosynthesis of anisotropic AuNPs using Ampelopsis grossedentata extract and the effects of halide ions on the formation of AuNPs has been demonstrated. The sizes and morphologies of AuNPs were characterized by UV-vis-NIR spectrophotometer and Transmission Electron Microscopy (TEM). It showed that the shape, size and optical properties of AuNPs can be fine-tuned by varying the dosage of the vine tea extract. The presence of halogen ions has significantly influence the morphology of AuNPs during the synthesis process. Both of Br- and Cl- could produced nanoplates, whereas I- distorted the triangle nanoparticles to induce the formation of aggregated spherical ones.


Sign in / Sign up

Export Citation Format

Share Document