Photocatalytic degradation of acetaminophen in water via ultraviolet light and titanium dioxide thin films part II: chemical and kinetic aspects

Author(s):  
Sunil Rawal ◽  
Sabrina H. Buer ◽  
J. Robby Sanders ◽  
Pedro E. Arce

Abstract Among the large family of emergent pharmaceutical contaminants, we find acetaminophen (ACE) that critically needs to be removed from wastewater. Advanced Oxidation Process (AOP) have proven effective in the degradation of large molecular contaminants from water. To the best of our knowledge this is the first study reported on the degradation of ACE based on immobilized TiO2 thin films. In an effort to increase the understanding of the efficiency of the degradation process, an in-depth investigation of the effects of the structure, i.e., coating layers and the amount of surface, i.e., number of coated slides used, is needed. Transparent, anatase-form TiO2 thin films were prepared via the sol-gel method (Rawal, S., S. Buer, J. R. Sanders, and P. E. Arce. 2021. “Photocatalytic Degradation of Acetaminophen from Water Solutions Via Thin Films. Part I: Synthesis and Characterization of TiO2 Thin Films.” International Journal of Reactor Engineering [Accepted]) and deposited onto glass microscope slides using a novel spraying technique, with coatings ranging from one to 10 layers. This contribution summarizes the effect of several key factors including initial concentration of the ACE, the number of coating layers (6, 8, and 10) on the glass slides and the number (4 and 6) of slides on the degradation levels for three selected media, e.g., acid, neutral and base. Comparisons studies, supported by statistical analysis between two different sets (4 and 6) of slides with discussion of potential physical-chemical reasons behind the behaviors are reported. Finally, global, first order kinetic rate constants are also reported for the different conditions used in the investigation. Although further research would be needed, in general the results are promising for the potential degradation of ACE in continuous flow systems by using immobilized TiO2 on surfaces as thin films.

Author(s):  
Sunil Rawal ◽  
Sabrina H. Buer ◽  
Wayne Hawkins ◽  
Jonathan Robby Sanders ◽  
Pedro E. Arce

Abstract The utilization of titanium dioxide (TiO2) photocatalysis for water and air purification is a frequently used method due to TiO2 having properties making it chemically inert, highly cost-effective, abundant, non-toxic, and environmentally-friendly. In an effort to increase the efficiency of the degradation process, an in-depth understanding of the effects of the structure and number of thin film coatings is needed. Transparent, anatase-form titanium dioxide thin films were prepared via the sol-gel method and deposited onto microscopic glass slides using a novel spraying technique, with coatings ranging from 1 to 10. Characterization of the TiO2 thin film coated slides was performed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The contribution shows that the coating technique is efficient in covering important areas of the surface and that it is suitable for a multiple coating layers thin film. The SEM imagines show that the surface of the slides increase coverage as the number of layers increases. This is potentially suitable for a mechanized spraying approach to upscaling the production of thin films for advanced oxidation applications.


2013 ◽  
Vol 700 ◽  
pp. 67-70 ◽  
Author(s):  
Rui Ma ◽  
Wen Jie Zhang

A novel porous TiO2-Al2O3 composite as a kind of environmental material was prepared by sol-gel method. The pore size distribution is not even in the whole pore size range. When pore size is 7.049 nm, the maximum pore volume of the material is 0.06627 cm3·g-1. The average pore size for the material is 14.56 nm and the total pore volume is 0.3945 cm3·g-1, as calculated from BJH method. Photocatalytic degradation of methyl orange can be regarded as following first order kinetic reaction. After 90 min of reaction, methyl orange degradation on the material was 77.0% and the total dye decoloration rate was 95.1%, containing both adsorption and photocatalytic degradation. The intensities of both peaks in visible and UV regions decreased sharply during photocatalytic degradation process.


2011 ◽  
Vol 110-116 ◽  
pp. 3795-3800 ◽  
Author(s):  
Xiao Zhi Wang ◽  
Wei Wei Yong ◽  
Wei Qin Yin ◽  
Ke Feng ◽  
Rong Guo

Expanded perlite (EP) modified titanium dioxide (TiO2) with different loading times were prepared by Sol-Gel method. Photocatalytic degradation kinetics of Rhodamine B (RhB) in polluted water by the materials (EP-nanoTiO2), as well as the effects of different loading times and the initial concentration of RhB on photocatalysis rate were examined. The catalytic activity of the regenerated photocatalyst was also tested. The results showed that photocatalyst modified three times with TiO2had the highest catalytic activity. Degradation ratio of RhB by EP-nanoTiO2(modified three times) under irradiation for 6 h were 98.0%, 75.6% and 63.2% for 10 mg/L, 20 mg/L and 30 mg/L, respectively.The photocatalyst activity has little change after the five times recycling, and the degradation rate of RhB decreased less than 8%. The reaction of photocatalysis for RhB with irradiation time can be expressed as first-order kinetic mode within the initial concentration range of RhB between 10mg/L and 30 mg/L. EP-nanoTiO2photocatalyst has a higher activity and stability to degrade RhB in aqueous solution.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Mohammad Khaledi Sardashti

Glass plate-supported nanostructure ZnO thin films were deposited by sol-gel spin coating. Films were preheated at275∘Cfor 10 minutes and annealed at 350, 450, and550∘Cfor 80 minutes. The ZnO thin films were transparent ca 80–90% in visible range and revealed that absorption edges at about 370 nm. Thec-axis orientation improves and the grain size increases which was indicated by an increase in intensity of the (002) peak at34.4∘in XRD corresponding to the hexagonal ZnO crystal. The photocatalytic degradation of X6G an anionic monoazo dye, in aqueous solutions, was investigated and the effects of some operational parameters such as the number of layer and reusability of ZnO nanostructure thin film were examined. The results showed that the five-layer coated glass surfaces have a very high photocatalytic performance.


Author(s):  
Anusuya Sahoo ◽  
A R Jayakrishnan ◽  
K Kamakshi ◽  
J P B Silva ◽  
K C Sekhar ◽  
...  

1998 ◽  
Vol 519 ◽  
Author(s):  
S.D. Burnside ◽  
V. Shklover ◽  
C.A. Barbe ◽  
K. Brooks ◽  
P. Comte ◽  
...  

AbstractNanocrystalline titanium dioxide has been synthesized using a sol-gel technique followed by hydrothermal growth at temperatures in the range 190-270°C. Thin films of these colloids were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption/desorption. Self-organization of the nanocrystalline particles in regular arrays was observed in films made from colloids autoclaved at lower temperatures. We present herein initial photovoltaic performance of these semiconducting films used as working electrodes in a dye-sensitized solar cell.


2010 ◽  
Vol 25 (1) ◽  
pp. 134-140 ◽  
Author(s):  
Yen-Pei Fu ◽  
Wen-Ku Chang ◽  
Hsin-Chao Wang ◽  
Chung-Wen Liu ◽  
Cheng-Hsiung Lin

In the current research, we successfully prepared TiO2/Ni–Cu–Zn ferrite composite powder for magnetic photocatalyst. The core Ni–Cu–Zn ferrite powder was synthesized using the steel pickling liquor and the waste solution of electroplating as the starting materials. The shell TiO2 nanocrystal was prepared by sol-gel hydrolysis precipitation of titanium isopropoxide [Ti(OC3H7)4] on the Ni–Cu–Zn ferrite powder followed by heat treatment. From transmission electron microscopy (TEM) image, the thickness of the titania shell was found to be approximately 5 nm. The core of Ni–Cu–Zn ferrite is spherical or elliptical shape, and the particle size of the core is in the range of 70–110 nm. The magnetic Ni–Cu–Zn ferrite nanopowder is uniformly encapsulated in a titania layer forming core-shell structure of TiO2/Ni–Cu–Zn ferrite powder. The degradation efficiency for methylene blue (MB) increases with magnetic photocatalyst (TiO2/Ni–Cu–Zn ferrite powder) content. When the magnetic photocatalyst content is 0.40 g in 150 mL of MB, the photocatalytic activity reached the largest value. With a further increase in the content of magnetic photocatalyst, the degradation efficiency slightly decreased. This occurs because the ultraviolet (UV) illumination is covered by catalysts, which were suspended in the methylene blue solution and resulted in the inhibition in the photocatalytic reaction. The photocatalytic degradation result for the relationship between MB concentration and illumination revealed a pseudo first-order kinetic model of the degradation with the limiting rate constant of 1.717 mg/L·min and equilibrium adsorption constant 0.0627 L/mg. Furthermore, the Langmuir–Hinshelwood model can be used to describe the degradation reaction, which suggests that the rate-determining step is surface reaction rather than adsorption is in photocatalytic degradation.


Sign in / Sign up

Export Citation Format

Share Document