Microwave-assisted preparation of polyphosphoric acid in a continuous-flow reactor

Author(s):  
Jinghua Ye ◽  
Chun Zhang ◽  
Taotao Gao ◽  
Huacheng Zhu

Abstract Polyphosphoric acid (PPA) is widely used in inorganic salt production, petrochemical industry, electronic material preparation and other manufacturing industries. Conventional preparation methods of PPA has disadvantages of pollution, high energy consumption and long production time. To address this problem, microwave continuous-flow preparation may be a desirable way due to its advantages of environmentally-friendly, rapidity and high efficiency. Therefore, to explore the process of preparing PPA by microwave continuous-flow method, a continuous-flow microwave reactor was designed for the dehydration process of orthophosphoric acid to prepare PPA in this paper. The microwave-assisted dehydration process was studied in comparison with the conventional dehydration process and the “closed” microwave-assisted dehydration process in terms of energy efficiency, process times and treatment capacity. The effect of input microwave power, reduced pressure and inlet flow velocity of orthophosphoric acid on the performance of the dehydration process was studied. The results showed that the influence of the microwave power on the temperature rise process during dehydration is greater than that of the reduced pressure. Moreover, the inlet flow rate has a great impact on the treatment capacity and product quality of the dehydration process. Bedsides, the comparison with the other two methods showed that microwave heating can effectively shorten the dehydration time, and the continuous-flow treatment can effectively improve the treatment capacity of microwave heating. The perspectives of the process scale-up by continuous-flow microwave heating method is also discussed.

2021 ◽  
Vol 17 ◽  
pp. 2543-2552
Author(s):  
Robin Klintworth ◽  
Garreth L Morgans ◽  
Stefania M Scalzullo ◽  
Charles B de Koning ◽  
Willem A L van Otterlo ◽  
...  

A wide range of N-(ethoxycarbonylmethyl)enaminones, prepared by the Eschenmoser sulfide contraction between N-(ethoxycarbonylmethyl)pyrrolidine-2-thione and various bromomethyl aryl and heteroaryl ketones, underwent cyclization in the presence of silica gel to give ethyl 6-(hetero)aryl-2,3-dihydro-1H-pyrrolizine-5-carboxylates within minutes upon microwave heating in xylene at 150 °C. Instead of functioning as a nucleophile, the enaminone acted as an electrophile at its carbonyl group during the cyclization. Yields of the bicyclic products were generally above 75%. The analogous microwave-assisted reaction to produce ethyl 2-aryl-5,6,7,8-tetrahydroindolizine-3-carboxylates from (E)-ethyl 2-[2-(2-oxo-2-arylethylidene)piperidin-1-yl]acetates failed in nonpolar solvents, but occurred in ethanol at lower temperature and microwave power, although requiring much longer time. A possible mechanism for the cyclization is presented, and further functionalization of the newly created pyrrole ring in the dihydropyrrolizine core is described.


2009 ◽  
Vol 62 (3) ◽  
pp. 236 ◽  
Author(s):  
Richard Hoogenboom ◽  
Tom F. A. Wilms ◽  
Tina Erdmenger ◽  
Ulrich S. Schubert

Nowadays, microwave heating has evolved into a common tool for chemists based on its numerous advantages over conventional conductive heating. Surprisingly, the efficiency of microwave-assisted heating is still rather unexplored. In this contribution, we report our investigations concerning the heating efficiency of a variety of solvents including polar and apolar substances. Moreover, the effects of adding salt or passive heating elements on the microwave heating efficiency will be addressed. Finally, the heating efficiency of demineralized water is discussed at different volumes and with different microwave power levels in both monomode and multimode microwave synthesizers, demonstrating maximum average heating efficiencies of 10% for small-scale vessels (5 mL), 20% for medium-scale (50 mL), and 30% for large-scale microwave heating (400 mL).


2001 ◽  
Vol 5 (3) ◽  
pp. 151-164 ◽  
Author(s):  
E. Balakrishnan ◽  
M. I. Nelson ◽  
X. D. Chen

The use of microwave heating to initiate combustion synthesis has been increasingly investigated in recent years because of its advantages over traditional methods. A simple mathematical model is used to model these experiments. The microwave power absorption term is modelled as the product of an Arrhenius reaction term with a function that decays exponentially with distance. The former represents the temperature-dependent absorption of the microwaves whereas the latter describes the penetration of the material by the microwaves. Combustion kinetics are modelled as a first-order Arrhenius reaction.


Author(s):  
Steven Splinter ◽  
Marilena Radoiu

An innovative technology for the continuous extraction of bioactive compounds from a wide range of biological materials has been developed, scaled up and successfully demonstrated at commercially-relevant scales. The technology, known as MAPTM, or “Microwave-Assisted Process”, robustly transfers from laboratory to continuous, industrial scale operation.  In wide-ranging trials, MAPTM has comprehensively demonstrated its ability to outperform many KPIs of conventional extraction processes, while offering biomass throughput, product consistency and low operational costs not attainable by other emerging technologies. Radient’s proprietary continuous-flow MAPTM extractor, Figure 1, was designed for continuous processing of up to 200 kg/h of biomass material. Verification of the mechanical integrity of the system was confirmed by flow testing of biomass / solvent slurries. Testing and verification of the efficiency of microwave energy transfer to the extractor cavity was completed at various microwave power settings using flowing water at 870 kg/h.  The microwave energy transfer to the system was verified to be >95 % in each case. As an example of performance, continuous flow MAPTM extraction of the antioxidant SDG from flax biomass was performed using 70 % ethanol / water as the solvent at two different conditions: -          75 kg/h flax / 5 L/kg solvent / 15 kW microwave power / extractor residence time 24 min; -          110 kg/h flax / 5 L/kg solvent / 20 kW microwave power / extractor residence time 16 min. The industrial-scale conditions for these runs were determined by extrapolating from optimized conditions previously obtained from batch lab-scale MAPTM experiments. The continuous flow approach eliminates the requirement for having geometric similarity between scales, i.e the equipment shape and dimensions do not have to scale proportionately.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 200-209
Author(s):  
Caiyun Zhang ◽  
Chunhong Li ◽  
Bolin Ji ◽  
Zhaohui Jiang

Abstract A fast, simple, and energy-saving microwave-assisted approach was successfully developed to prepare carbon microspheres. The carbon microspheres with a uniform particle size and good dispersity were prepared using glucose as the raw material and HCl as the dehydrating agent at low temperature (90°C) in an open system with the assistance of microwave heating. The carbon microspheres were characterized by elemental analysis, XRD, SEM, FTIR, TG, and Raman. The results showed that the carbon microspheres prepared under the condition of 18.5% (v/v) HCl and heating for 30 min by microwave had a narrow size distribution. The core–shell structure of the carbon core and TiO2 shell was prepared with (NH4)2TiF6, H3BO3 using the microwave-assisted method. The hollow TiO2 microspheres with good crystallinity and high photocatalytic properties were successfully prepared by sacrificing the carbon microspheres.


2021 ◽  
Vol 692 (2) ◽  
pp. 022001
Author(s):  
Xinhua Zhang ◽  
Zhaowen Wang ◽  
Huimin Wu ◽  
Chaohui Liu ◽  
Zhihao Wang ◽  
...  

1998 ◽  
Vol 555 ◽  
Author(s):  
H. Fritze ◽  
A. Schnittker ◽  
T. Witke ◽  
C. Rüscher ◽  
S. Weber ◽  
...  

AbstractPulsed Laser Deposition (PLD) allows the ablation of nonconductive and high melting point target materials and the preparation of films with complex composition. High energy impact leads to melting and evaporation of the target material in a single step. In case of mullite ablation, the flux of the metal components is stoichiometric. Under reduced pressure the oxygen content in the layers decreases. However, after a short oxidation treatment, the formation of mullite in the coating is completed, as confirmed by IR spectroscopy and XRD investigations. For a commercial Si-SiC precoated C/C material, the effectiveness of additional PLD mullite layers as outer oxidation protection is tested in the temperature range 773 K < T < 1873 K. Mullite coatings with a thickness of 2.5 pm improve the oxidation behaviour significantly. Because of SiO2 formation at the mullite-SiC interface, all samples exhibited a mass increase upon oxidation. For oxidation durations of three days, only amorphous SiO2 is formed at the mullite-SiC interface. The inward diffusion of oxygen across the outer mullite-containing layer controls the kinetics of the reaction, as was deduced from 18O diffusivity measurements in PLD mullite layers. At temperatures close to the eutectic temperature (1860 K), mullite can seal defects. The calculated oxidation rates resulting from the diffusion parameters in SiO2 and mullite are close to the thermogravimetric data.


2014 ◽  
Vol 936 ◽  
pp. 1694-1700
Author(s):  
Zhi Wei Li ◽  
Kai Yong Jiang ◽  
Fei Wang ◽  
Ji Liang Zhang

This paper mainly introduces the mechanism of microwave heating: electric conduction loss, eddy current loss and arc discharge. The microwave heating behavior of 316 stainless steel powder body which made by gel casting was investigated in the paper. Experiments on different microwave power, powder particle size, and the content of auxiliary heating material showed that the smaller the powder particle size, the larger microwave power and auxiliary heating materials help 316 stainless steel body for sintering.


2011 ◽  
Vol 64 (11) ◽  
pp. 1522 ◽  
Author(s):  
Manuela Oliverio ◽  
Antonio Procopio ◽  
Toma N. Glasnov ◽  
Walter Goessler ◽  
C. Oliver Kappe

Finding environmentally gentle methods to graft Lewis acid on the surface of mesoporous materials is a topic of current interest. Herein we describe the optimization of a preparation procedure of a mesoporous silica-supported ErIII catalyst using the microwave-assisted post-calcination functionalization of Mobil Composition of Matter-41 silica as the key step. The required time for functionalization was reduced from several hours to 10 min using sealed-vessel microwave technology. Control experiments using conventional heating at the same temperature demonstrated that the rate increase is owing to a simple thermal/kinetic effect as a result of the higher reaction temperature. The resulting ErIII catalyst was tested for the first time as a catalyst in the continuous flow deprotection of benzaldehyde dimethylacetal and a complete leaching study was performed.


Sign in / Sign up

Export Citation Format

Share Document