Multiphase High-Frequency Isolated DC–DC Converter for Industrial Applications

2014 ◽  
Vol 15 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Rakesh Maurya ◽  
S. P. Srivastava ◽  
Pramod Agarwal

Abstract Industrial applications such as welding, plasma cutting, and surface hardening require a large DC current at low voltage. In such applications, the rating of power supply varies from few kilowatts to hundreds of kilowatts. The power supply employs in such applications particularly in arc welding process is expected to operate from open-circuit (no-load) to short-circuit (when the electrode sticks to the workpiece for a short span of time) quickly. In this paper, high-frequency isolated multiphase DC–DC converter is proposed which is well suited for aforementioned applications. Based on mathematical analysis, a simulation study with 5 kW, 5 V/1,000 A proposed model is carried out using Simulink block set and Sim Power System tool box and its performances are evaluated under symmetrical control methods. To verify the simulation results, scaled prototype model of rating 1.5 V/100 A is developed and tested with aforementioned control method under different operating conditions. In comparison with conventional welding power supply employed in many industries, the performance of proposed converter is improved significantly in terms of size and weight, efficiency and dynamic response.

2020 ◽  
Vol 9 (2) ◽  
pp. 424
Author(s):  
M. Sreenivasa reddy ◽  
A. Shubhangi Rao ◽  
Ch. Sai Prakash

This paper mainly deals with energy consumption and monitoring of each block after carefully observing where the losses occur and how to minimize these losses and how to reduce unit consumption of each block and units consumed by capacitor bank. Base loads and Peak loads can be observed and operated in such a way as to reduce unit consumption.MLR college has 315KVA power from the grid as well as 260KW solar power generating unit where 40 percent of the power from the grid is saved. Proper planning for operating the underground bore motors used for Hostels, Mess and College buildings also saves some amount of units consumed by these motors. Further if power factor is maintained 0.99 instead of 0.2 or 0.3 some amount of units consumed can be saved. Further if maximum demand is prevented from reaching beyond the transformer rating then some amount of units consumed can be saved. Installing copper earth pits of suitable numbers for each block and balancing the loads in each phase can also reduce the losses.Synchronizing panel is to be connected to the existing 4 generators of rating 200KVA,180KVA and two numbers of 125 KVA to utilize the power resources properly.The common electrical problems like short circuit, open circuit, over voltage, low voltage, frequent power cuts, low power factor, high electricity bills damage in the meters etc. The above electrical problems are identified, rectified and frequently monitored through modern technologies like IOT.  


Vestnik MGTU ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 345-353
Author(s):  
E. I. Gracheva ◽  
A. N. Gorlov ◽  
A. N. Alimova

Determination of the main characteristics of the topology and technical condition of equipment underoperating conditions is necessary for analyzing and assessing power and electricity losses in intrashoplow-voltage industrial power supply networks. A comparative analysis of the technical characteristicsof automatic circuit breakers VA57-31 (KEAZ), NSX100 TM-D (Schneider Electric), DPX3 160 (Legrand), Tmax XT1 TMD (ABB) has shown that the main technical parameters of the machines are close in their values. At that it has been found out that automatic switches of the BA57-31 series have the lowest value of power losses per pole (7.5 W), whereas the automatic switches of the Tmax XT1 TMD series have the highest value (10 W). Thus, under the operating conditions of the equipment, the lowest value of power and electricity losses is characteristic of low-voltage electrical networks with installed circuit breakers of the BA57-31 series, and the highest value of losses is noted in in-shop systems with installed circuit breakers Tmax XT1 TMD. Using catalog data, the dependences of active power losses in circuit breakers on rated currents have been established; the algorithms have been developed and the obtained dependences have been modeled using approximating functions. The standard deviation of the compiled approximating functions has been calculated. Analytical expressions of the dynamics of power losses per pole have been determined as a function of the rated current. The graphical dependences of the investigated parameters of low-voltage equipment have been presented. The developed models are recommended to be used to increase the reliability of the assessment and refinement of the amount of active power and electricity losses in low-voltage electrical networks of industrial power supply systems, agrotechnical complexes, and enterprises of the public utility sector.


2022 ◽  
Vol 1211 (1) ◽  
pp. 012009
Author(s):  
Nikolay Danilov ◽  
Sergey Tsyruk ◽  
Alexandr Timonin ◽  
Karam Sharafeddine

Abstract A proper choice of the design and operation algorithm of emergency control devices like high-speed bus transfer (HSBT) is only possible proceeding from a study and analysis of steady-state and transient processes in emergency modes of operation (short-circuit faults, power supply disconnection, or phase open-circuit fault). The numerical experiments for studying such modes that were carried out, using the Matlab Simulink software package, on the mathematical models of an industrial power supply system involving synchronous motors connected to it made it possible to synthesize a new differential HSBT pickup unit featuring a high-speed response to emergency events. In doing so, special attention was paid to an analysis of transient operation modes with the aim of minimizing the probability of false actuations. The obtained study results have found practical application in the HSBT devices installed at the facilities of PJSC MOSENERGO. The experience gained from the operation of a new device jointly with high-speed circuit breakers produced by the Tavrida-Elektrik state-owned corporation has demonstrated essential advantages in comparison with the conventional HSBT designs.


Author(s):  
Muhammad Ibrahim Munir ◽  
Sajid Hussain ◽  
Ali Al-Alili ◽  
Reem Al Ameri ◽  
Ehab El-Sadaany

Abstract One of the core features of the smart grid deemed essential for smooth grid operation is the detection and diagnosis of system failures. For a utility transmission grid system, these failures could manifest in the form of short circuit faults and open circuit faults. Due to the advent of the digital age, the traditional grid has also undergone a massive transition to digital equipment and modern sensors which are capable of generating large volumes of data. The challenge is to preprocess this data such that it can be utilized for the detection of transients and grid failures. This paper presents the incorporation of artificial intelligence techniques such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) to detect and comprehensively classify the most common fault transients within a reasonable range of accuracy. For gauging the effectiveness of the proposed scheme, a thorough evaluation study is conducted on a modified IEEE-39 bus system. Bus voltage and line current measurements are taken for a range of fault scenarios which result in high-frequency transient signals. These signals are analyzed using continuous wavelet transform (CWT). The measured signals are afterward preprocessed using Discrete Wavelet Transform (DWT) employing Daubechies four (Db4) mother wavelet in order to decompose the high-frequency components of the faulty signals. DWT results in a range of high and low-frequency detail and approximate coefficients, from which a range of statistical features are extracted and used as inputs for training and testing the classification algorithms. The results demonstrate that the trained models can be successfully employed to detect and classify faults on the transmission system with acceptable accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shuai Yang ◽  
Yanfeng Xing ◽  
Fuyong Yang ◽  
Juyong Cao

In intelligent manufacturing, an intelligent control method of welding process is an important process of intelligent welding manufacturing technology (IWMT). Metal transfer is a key factor to control the welding process. Metal transfer and droplet spreading are of vital importance for welding formation. A new theoretical model of cold metal transfer (CMT) in short-circuit transfer mode is proposed in this paper. In this model, the CMT welding process is regarded as a continuous process of arc heating, mass transfer, short-circuit, and spreading, and the relations between these processes are analyzed. The calculation equations used by the model can analyze the welding formation clearly and simplify the complex welding process into continuous physical behavior. The predicted welding width shows good agreement with the measurement results. The mechanism of increased welding width is also comprehensively analyzed. Results have a certain guiding effect on aluminum alloy welding process control.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 156 ◽  
Author(s):  
Saba Gul ◽  
Azhar Ul Haq ◽  
Marium Jalal ◽  
Almas Anjum ◽  
Ihsan Ullah Khalil

Fault analysis in photovoltaic (PV) arrays is considered important for improving the safety and efficiency of a PV system. Faults do not only reduce efficiency but are also detrimental to the life span of a system. Output can be greatly affected by PV technology, configuration, and other operating conditions. Thus, it is important to consider the impact of different PV configurations and materials for thorough analysis of faults. This paper presents a detailed investigation of faults including non-uniform shading, open circuit and short circuit in different PV interconnections including Series-Parallel (SP), Honey-Comb (HC) and Total-cross-Tied (TCT). A special case of multiple faults in PV array under non-uniform irradiance is also investigated to analyze their combined impact on considered different PV interconnections. In order to be more comprehensive, we have considered monocrystalline and thin-film PV to analyze faults and their impact on power grids. Simulations are conducted in MATLAB/Simulink, and the obtained results in terms of power(P)–voltage(V) curve are compared and discussed. It is found that utilization of thin-film PV technology with appropriated PV interconnections can minimize the impact of faults on a power grid with improved performance of the system.


2013 ◽  
Vol 392 ◽  
pp. 526-530
Author(s):  
Li Di Wang ◽  
Yue Zhang ◽  
Chun Cheng Han ◽  
Zhe Li

The short-circuit test is an important topic on the study of transformer features. With the shunt capacitor paralleled to the tested transformer, the test current can be reduced by the resonant of the capacitor and the inductance of transformer winding. Furthermore, using the high frequency power supply, the capacitor can be reduced in the resonant point because the high frequency values. In this work, the simulation model of short-circuit test of transformer with different frequency power supply is designed. Under variable frequency power supply, which are 50Hz,100Hz and 150Hz, the shunt capacitors value is given. From the simulation results, the application of the shunt capacitor takes a role in the short-circuit test of transformer. This has a significance role in transformer test research and engineering application field.


2011 ◽  
Vol 383-390 ◽  
pp. 7202-7207
Author(s):  
Sheng Wen Fan ◽  
Yun Zhao

High-frequency digital inverter power supply has the advantages of small, no noise, high efficiency, small ripp- le, and perfect protection, therefore, is gradually replacing the traditional electron beam welder which uses the 400Hz frequency generator. However, with more high frequency of the power supply, the design of the transformer used by the high-frequency high-voltage electron beam welding becomes difficult. Therefore, this paper put forward a diversified transformer mode and a voltage doubling rectifier circuit, which were used to reduce the transformer turns ratio, thus reducing the topology of the transformer distribution para- meters. Accordingly, a special high-frequency high-voltage electron beam welding tank is designed. Tests show that the set of performance indicators of the fuel tank meets the design goals to meet the actual needs of welding process.


Sign in / Sign up

Export Citation Format

Share Document