Effect of high pressure processing (HPP) on spore preparation of probiotic Bacillus coagulans LBSC [DSM 17654]

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pratik Bagkar ◽  
Anil Kumar Gupta ◽  
Chiranjit Maity

Abstract High pressure processing (HPP) has become a mainstream technology for modern age food processing. HPP conditions are detrimental to inherent microbial flora, including food pathogens. A probiotic intended for supplementation in a high-pressured processed food should therefore be stable to processing and subsequent storage conditions. The present study reports the viability of Bacillus coagulans LBSC [DSM 17654] spores at high hydrostatic pressures (HHP, 450 and 550 MPa) processing. B. coagulans LBSC spores were viable under both pressure condition at pH 2.60, 5.00, 7.00, and 8.25. Similar HPP conditions completely inactivated a reference strain Escherichia coli ATCC 25922. The HPP treated B. coagulans LBSC spore preparation showed no reduction in the viability on room temperature storage for a duration of six months. Results demonstrated the resilience of probiotic B. coagulans LBSC spores under HPP treatment, suggesting its potential incorporation in a range of functional foods and beverages.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ajith Amsasekar ◽  
Rahul S. Mor ◽  
Anand Kishore ◽  
Anupama Singh ◽  
Saurabh Sid

Purpose The increased demand for high-quality, nutritionally rich processed food has led to non-thermal food processing technologies like high pressure processing (HPP), a novel process for microbial inactivation with minimal loss of nutritional and sensory properties. The purpose of this paper is to highlight the impact of HPP on the microbiological, nutritional and sensory properties of food. Design/methodology/approach Recent research on the role of HPP in maintaining food quality and safety and the impact of process conditions with respect to various food properties have been explored in this paper. Also, the hurdle approach and the effectiveness of HPP on food quality have been documented. Findings HPP has been verified for industrial application, fulfilling the consumer demand for processed food with minimum nutrition loss at low temperatures. The positive impact of HPP with other treatments is known as the hurdle approach that enhances its impact against microorganism activity and minimizes the effects on nutrition and sensory attributes. Originality/value This paper highlights the impact of HPP on various food properties and a good alternative as non-thermal technology for maintaining shelf life, sensory properties and retention of nutrients.


2006 ◽  
Vol 73 (2) ◽  
pp. 581-585 ◽  
Author(s):  
David H. Kingsley ◽  
Daniel R. Holliman ◽  
Kevin R. Calci ◽  
Haiqiang Chen ◽  
George J. Flick

ABSTRACT Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20°C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log10 PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5°C; a 5-min pressure treatment of 350 MPa at 30°C inactivated 1.15 log10 PFU of virus, while the same treatment at 5°C resulted in a reduction of 5.56 log10 PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5°C and 20°C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5°C was sufficient to inactivate 4.05 log10 PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.


Author(s):  
James Chhay ◽  
BCIT School of Health Sciences, Environmental Health ◽  
Dale Chen ◽  
Hsin Kuo

  Background Kombucha tea is a fermented tea beverage that is mainly consumed for its associated-health benefits. These associated-health benefits may range from detoxifying the body to cancer treating. However, there is little to no scientific evidence that suggests that they work on humans. Similarly, kombucha tea is also prone to post-fermentation. This presents possible ethanol production and accumulation within the tea after packaging which can pose a possible health risk to susceptible population if not properly labelled or controlled. This study will investigate if there is any post-ethanol accumulation in commercially produced kombucha tea products under various storage conditions. Methods The ethanol concentration of 3 different kombucha tea brands (i.e.: Pure+, Health-Ade, and RISE) at various storage conditions (i.e.: no storage, refrigeration, and room temperature) were analyzed using GC-FID to determine post-ethanol accumulation. In addition, NCSS software was used to conduct a statistical analysis on the data to determine whether the 3 different kombucha tea brands exceeded the ethanol regulatory limit and whether the ethanol accumulation was dependent on storage temperatures. Results The mean ethanol concentration for Pure+, Health-Ade, and RISE after refrigeration for 3 weeks were 0.722%, 0.696%, and 0.050% relatively which all showed a slight decrease in ethanol compared to their baseline ethanol levels (i.e.: no storage). Similarly, Pure+, Health-Ade, and RISE mean ethanol concentration after room temperature storage were 1.766%, 1.285%, and 0.794% relatively which indicates ethanol accumulation. Statistical analysis showed that there is a significant difference between room temperature storage and the other 2 storage conditions (i.e.: no storage and refrigeration). Also, only Pure+ and Health-Ade under room temperature storage showed a statistically significant mean ethanol concentration above the regulatory limit. Conclusion Results suggests that room temperature storage of Pure+, Health-Ade, and RISE for 3 weeks increased the ethanol levels significantly while refrigerating them will decrease the ethanol levels slightly which can minimize any potential post-fermentation process from happening. Furthermore, only Pure+ and Health-Ade under room temperature storage for 3 weeks were over the 1% ABV regulatory limit. Lastly, the data obtained from this study can be used to develop guidelines and policies in regulating kombucha tea manufacturers and in educating the public and other regulatory agencies on the matter.  


2022 ◽  
Vol 185 ◽  
pp. 111773
Author(s):  
Enrique Pino-Hernández ◽  
Carlos A. Pinto ◽  
Luís Abrunhosa ◽  
José António Teixeira ◽  
Jorge A. Saraiva

2015 ◽  
Vol 59 (2) ◽  
pp. 51-61 ◽  
Author(s):  
Allna Piotraszewska-Pająk ◽  
Anna Gliszczyńska-Świgło

AbstractThe colour of honey is one of the most important quality criteria for consumers. The colour depends mainly on the content of plant pigments but the honey consistency, shape, and size of the crystals may also influence the honey colour parameters. It is related to the crystallisation and decrystallisation processes of honey during storage. In the present study, directions of colour changes of honey during storage were evaluated using a tristimulus colorimeter and the CIE 1976 L*a*b* and CIE L*C*hosystems. The effect of time (3 and 9 months) and storage conditions (cold storage, room temperature storage with access to light, and room temperature storage without access to light) on the colour of nectar honeys was investigated. The results obtained showed that both the type of honey and the storage conditions influenced the honey colour parameters. Significant differences in direction and intensity of the colour changes of honey during storage were observed. These differences make it difficult to indicate which storage conditions are optimal to preserve the colour of the honey. It was found that acacia and heather honeys were the most susceptible to colour changes during long-term storage in all of the study’s applied conditions, whereas rape and buckwheat honeys were the most stable in colour parameters.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7350
Author(s):  
Gajanan S. Kothawade ◽  
Sindhuja Sankaran ◽  
Austin A. Bates ◽  
Brenda K. Schroeder ◽  
Lav R. Khot

The study evaluates the suitability of a field asymmetric ion mobility spectrometry (FAIMS) system for early detection of the Pythium leak disease in potato tubers simulating bulk storage conditions. Tubers of Ranger Russet (RR) and Russet Burbank (RB) cultivars were inoculated with Pythium ultimum, the causal agent of Pythium leak (with negative control samples as well) and placed in glass jars. The headspace in sampling jars was scanned using the FAIMS system at regular intervals (in days up to 14 and 31 days for the tubers stored at 25 °C and 4 °C, respectively) to acquire ion mobility current profiles representing the volatile organic compounds (VOCs). Principal component analysis plots revealed that VOCs ion peak profiles specific to Pythium ultimum were detected for the cultivars as early as one day after inoculation (DAI) at room temperature storage condition, while delayed detection was observed for tubers stored at 4 °C (RR: 5th DAI and RB: 10th DAI), possibly due to a slower disease progression at a lower temperature. There was also some overlap between control and inoculated samples at a lower temperature, which could be because of the limited volatile release. Additionally, data suggested that the RB cultivar might be less susceptible to Pythium ultimum under reduced temperature storage conditions. Disease symptom-specific critical compensation voltage (CV) and dispersion field (DF) from FAIMS responses were in the ranges of −0.58 to −2.97 V and 30–84% for the tubers stored at room temperature, and −0.31 to −2.97 V and 28–90% for reduced temperature, respectively. The ion current intensities at −1.31 V CV and 74% DF showed distinctive temporal progression associated with healthy control and infected tuber samples.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2919
Author(s):  
Gabriela Lorena Salazar-Orbea ◽  
Rocío García-Villalba ◽  
Francisco A. Tomás-Barberán ◽  
Luis Manuel Sánchez-Siles

Polyphenols are important bioactive compounds that are affected by processing. The consumer’s demand for minimally processed products contributes to the increase in non-thermal technologies such as high-pressure processing (HPP) in the food industry. This review is aimed at critically discussing the positive and negative effects of thermal treatment (TT) and HPP on the stability of different polyphenol families in agro-food products obtained from strawberry and apple, two of the most used fruits in food processing. Our findings show that the phenolic content was affected by processing, fruit type, polyphenol family, and storage conditions (time and temperature) of the final product. To increase shelf life, manufacturers aiming to preserve the natural content of polyphenols need to find the sweet spot between polyphenol stability and product shelf-life since the residual enzyme activity from HPP can affect polyphenols negatively.


2009 ◽  
Vol 73 (4) ◽  
pp. 943-945 ◽  
Author(s):  
Shigeaki UENO ◽  
Mayumi HAYASHI ◽  
Toru SHIGEMATSU ◽  
Tomoyuki FUJII

Sign in / Sign up

Export Citation Format

Share Document