The High Damping Capacity of Shape Memory Alloys

Author(s):  
Jan Van Humbeeck ◽  
Johannes Stoiber ◽  
Luc Delaey ◽  
Rolf Gotthardt
2014 ◽  
Vol 657 ◽  
pp. 392-396
Author(s):  
Adela Ursanu Dragoş ◽  
Sergiu Stanciu ◽  
Nicanor Cimpoeşu ◽  
Mihai Dumitru ◽  
Ciprian Paraschiv

Entire or partial loss of function in the shoulder, elbow or wrist represent an increasingly common ailment connected to a wide range of injuries or other conditions including sports, occupational, spinal cord injuries or strokes. A general treatment of these problems relies on physiotherapy procedures. An increasing number of metallic materials are continuously being developed to expect the requirements for different engineering applications including biomedical field. Few constructive models that can involve intelligent materials are analyzed to establish the advantages in usage of shape memory elements mechanical implementation. The shape memory effect, superelasticity and damping capacity are unique characteristics at metallic alloys which demand careful consideration in both design and manufacturing processes. The actual rehabilitation systems can be improved using smart elements in motorized equipments like robotic systems. Shape memory alloys, especially NiTi (nitinol), represent a very good alternative for actuation in equipments with moving dispositive based on very good actuation properties, low mass, small size, safety and user friendliness. In this article the actuation and the force characteristics were analyzed to investigate a relationship between the bending angle and the actuation real value.


2006 ◽  
Vol 319 ◽  
pp. 33-38 ◽  
Author(s):  
I. Yoshida ◽  
Kazuhiro Otsuka

Low frequency internal friction of Ti49Ni51 binary and Ti50Ni40Cu10 ternary shape memory alloys has been measured. The effect of solution and aging heat treatments on the damping property was examined. The temperature spectrum of internal friction for TiNi binary alloy consists, in general, of two peaks; one is a transition peak which is associated with the parent-martensite transformation and is rather unstable in a sense that it strongly depends on the frequency and decreases considerably when held at a constant temperature. The other one is a very high peak of the order of 10-2, which appears at around 200K. It appears both on cooling and on heating with no temperature hysteresis, and is very stable. The behavior of the peak is strongly influenced by the heat treatments. The trial of two-stage aging with a purpose of improving the damping capacity has been proved unsatisfactory. TiNiCu has a very high damping, the highest internal friction reaching 0.2, but by quenching from very high temperature, say 1373K, the damping is remarkably lowered. For the realization of high damping the quenching from a certain temperature range around 1173K seems the most preferable condition.


1993 ◽  
Vol 115 (1) ◽  
pp. 129-135 ◽  
Author(s):  
C. Liang ◽  
C. A. Rogers

Shape memory alloys (SMAs) have several unique characteristics, including their Young’s modulus-temperature relations, shape memory effects, and damping characteristics. The Young’s modulus of the high-temperature austenite of SMAs is about three to four times as large as that of low-temperature martensite. Therefore, a spring made of shape memory alloy can change its spring constant by a factor of three to four. Since a shape memory alloy spring can vary its spring constant, provide recovery stress (shape memory effect), or be designed with a high damping capacity, it may be useful in adaptive vibration control. Some vibration control concepts utilizing the unique characteristics of SMAs will be presented in this paper. Shape memory alloy springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some design approaches based upon linear theory have been proposed for shape memory alloy springs. A more accurate design method for SMA springs based on a new nonlinear thermomechanical constitutive relation of SMA is also presented in this paper.


2020 ◽  
Vol 1010 ◽  
pp. 34-39
Author(s):  
Ying Ci Wee ◽  
Hamidreza Ghandvar ◽  
Tuty Asma Abu Bakar ◽  
Esah Hamzah

Copper-based shape memory alloys (SMAs) gaining attention due to their high damping properties during martensitic transformation and effective in energy dissipation which is applicable to damping application. However, copper-based SMAs such as the ternary Cu-Al-Ni are not easily deformed in the lower temperature martensitic phase which can be attributed to brittleness induced by coarse grain size, high degree of order and elastic anisotropy. Hence, this study aims to improve the properties of Cu-Al-Ni SMAs by addition of fourth alloying element. In this research, Cu-Al-Ni alloys with the addition of the fourth additional element, cobalt were prepared by casting. Microstructure characteristics of Cu-Al-Ni SMAs with and without Co addition were investigated via scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). Damping capacity was determined by dynamic mechanical analysis (DMA). It was found that the alloy with 0.7wt% of Co addition showed the best improvement on the damping properties.


2006 ◽  
Vol 319 ◽  
pp. 17-24
Author(s):  
Rolf Gotthardt

The shape memory effect and the high damping in shape memory alloys are based on the martensitic phase transformation, which takes place essentially without diffusion and any change of order have an influence on its side effects: the memory effect, the superelasticity and the high damping capacity of the martensitic phase. A new method to control the performance of shape memory alloys is presented, which is based on selective modification of specified parts of working components. In this research, ion irradiation has been used to introduce locally disorder into a crystal or even amorphise it. A pre-deformed Ni-Ti, 6μm thin film in its martensitic state has been irradiated with Ni-ions of energy of 5 MeV up to a dose of 1016 ions/cm2. By this treatment, a 2μm thin surface layer has been finally transformed into an amorphous state, in which the martensitic transformation is suppressed. During heating the underlying non-modified layer is contracting and an out-of-plane movement is observed. The amorphous layer is elastically deformed and its energy is used during cooling to bring the film in its original shape. In this way, a reversible movement of the film is created. This new technique not only allows us to design new types of micro-actuators, but also to influence locally the high damping, which can be of great importance for micro-engineering applications.


Author(s):  
Jonas Böttcher ◽  
Marcus Neubauer ◽  
Jörg Wallaschek

The nonlinear, hysteretic stress-strain characteristic of superelastic shape memory alloys (SMA) results in energy dissipation and therefore in high damping capacities. Due to the nonlinearity the damping capacity strongly depends on the amplitude of the applied excitation. In this work, a rheological non-smooth model is used to describe the principle behavior of superelastic SMA undergoing harmonic displacements. The equivalent mechanical model consists of a spring representing the elastic deformation of the superelastic SMA in austenitic and detwinned martensitic state. A friction element represents the stress plateaus for forward and backward transformation between austenitic and martensitic state. A constant force is applied to the system to generate an offset which shifts the hysteresis to positive force values. Two mechanical stops are implemented to describe the end of the stress plateaus and therefore correspond to the strain differences of the stress levels for forward and backward transformation. Thus, the system behavior is highly amplitude-dependent. A harmonic approximation of the force generated by the superelastic SMA element during one excitation period is calculated by applying the Harmonic Balance Method to the nonlinear force signal of the rheological model. In this context the Fourier coefficients are calculated by performing a piecewise integration of the force signal. The Integrals are being calculated for each steady interval. The equivalent stiffness and damping coefficients are given for this approximation as functions of excitation amplitude and the system parameters. Based on these results, the damping capacity of a superelastic shape memory element undergoing harmonic displacements is presented using an analytical expression for the damping ratio.


1994 ◽  
Vol 360 ◽  
Author(s):  
R. Kainuma ◽  
N. Ono ◽  
K. Ishida

AbstractThe basic concept underlying the alloy design and microstructural control method utilised in developing a new type of β(B2)+ γ (A1) two-phase ductile shape memory alloy in the Ni-Al base systems is briefly reviewed. The characteristic features of the shape memory effect (SME) in the Ni-Al-Fe and Ni-Al-Fe-Mn alloys are reported with particular reference to the transformation and deformation temperatures, the volume fractions of the γ phase, the morphology of the β + γ structure and the effect of cycling. Training by cycling treatment has a significant effect on the degree of shape recovery and pseudo-elasticity in the β + γ two-phase alloys. These duplex β + γ alloys also exhibit a combination of relatively high damping capacity and high yield strength. It is emphasized that these alloys could be expected to fill the need for a new group of shape memory alloys which operate at elevated temperatures over 100°C.


Sign in / Sign up

Export Citation Format

Share Document