Dynamics of synthetic drug transmission models

Author(s):  
Shitao Liu ◽  
Liang Zhang

Abstract The deterministic and stochastic synthetic drug transmission models with relapse are formulated. For the deterministic model, the basic reproduction number R 0 is derived. We show that if R 0 < 1, the drug-free equilibrium is globally asymptotically stable and if R 0 > 1, there exists a unique drug-addition equilibrium which is globally asymptotically stable. For the stochastic model, we show there exists a unique global positive solution of the stochastic model for any positive initial value. Then by constructing some stochastic Lyapunov functions, we show that the solution of the stochastic model is going around each of the steady states of the corresponding deterministic model under certain parametric conditions. The sensitive analysis of the basic reproduction number R 0 indicates that it is helpful to reduce the relapse rate of people who have a history of drug abuse in the control of synthetic drug spreading. Numerical simulations are carried out and approve our results.

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 328 ◽  
Author(s):  
Yanli Ma ◽  
Jia-Bao Liu ◽  
Haixia Li

In this paper, an SIQR (Susceptible, Infected, Quarantined, Recovered) epidemic model with vaccination, elimination, and quarantine hybrid strategies is proposed, and the dynamics of this model are analyzed by both theoretical and numerical means. Firstly, the basic reproduction number R 0 , which determines whether the disease is extinct or not, is derived. Secondly, by LaSalles invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R 0 < 1 , and the disease dies out. By Routh-Hurwitz criterion theory, we also prove that the disease-free equilibrium is unstable and the unique endemic equilibrium is locally asymptotically stable when R 0 > 1 . Thirdly, by constructing a suitable Lyapunov function, we obtain that the unique endemic equilibrium is globally asymptotically stable and the disease persists at this endemic equilibrium if it initially exists when R 0 > 1 . Finally, some numerical simulations are presented to illustrate the analysis results.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750067 ◽  
Author(s):  
Ding-Yu Zou ◽  
Shi-Fei Wang ◽  
Xue-Zhi Li

In this paper, the global properties of a mathematical modeling of hepatitis C virus (HCV) with distributed time delays is studied. Lyapunov functionals are constructed to establish the global asymptotic stability of the uninfected and infected steady states. It is shown that if the basic reproduction number [Formula: see text] is less than unity, then the uninfected steady state is globally asymptotically stable. If the basic reproduction number [Formula: see text] is larger than unity, then the infected steady state is globally asymptotically stable.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Stanislas Ouaro ◽  
Ali Traoré

We study a vector-borne disease with age of vaccination. A nonlinear incidence rate including mass action and saturating incidence as special cases is considered. The global dynamics of the equilibria are investigated and we show that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable; that is, the disease dies out, while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable, which means that the disease persists in the population. Using the basic reproduction number, we derive a vaccination coverage rate that is required for disease control and elimination.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yu Ji ◽  
Muxuan Zheng

The basic viral infection models, proposed by Nowak et al. and Perelson et al., respectively, have been widely used to describe viral infection such as HBV and HIV infection. However, the basic reproduction numbers of the two models are proportional to the number of total cells of the host's organ prior to the infection, which seems not to be reasonable. In this paper, we formulate an amended model with a general standard incidence rate. The basic reproduction number of the amended model is independent of total cells of the host’s organ. When the basic reproduction numberR0<1, the infection-free equilibrium is globally asymptotically stable and the virus is cleared. Moreover, ifR0>1, then the endemic equilibrium is globally asymptotically stable and the virus persists in the host.


2015 ◽  
Vol 08 (02) ◽  
pp. 1550027 ◽  
Author(s):  
Aadil Lahrouz

An epidemic model with a class of nonlinear incidence rates and distributed delay is analyzed. The nonlinear incidence is used to describe the saturated or the psychological effect of certain serious epidemics on the community when the number of infectives is getting larger. The distributed delay is derived to describe the dynamics of infectious diseases with varying immunity. Lyapunov functionals are used to show that the disease-free equilibrium state is globally asymptotically stable when the basic reproduction number is less than or equal to one. Moreover, it is shown that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions under which the endemic equilibrium is locally and globally asymptotically stable are obtained.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850069 ◽  
Author(s):  
Xia Wang ◽  
Ying Zhang ◽  
Xinyu Song

In this paper, a susceptible-vaccinated-exposed-infectious-recovered epidemic model with waning immunity and continuous age structures in vaccinated, exposed and infectious classes has been formulated. By using the Fluctuation lemma and the approach of Lyapunov functionals, we establish a threshold dynamics completely determined by the basic reproduction number. When the basic reproduction number is less than one, the disease-free steady state is globally asymptotically stable, and otherwise the endemic steady state is globally asymptotically stable.


2016 ◽  
Vol 10 (01) ◽  
pp. 1750003
Author(s):  
Maoxing Liu ◽  
Lixia Zuo

A three-dimensional compartmental model with media coverage is proposed to describe the real characteristics of its impact in the spread of infectious diseases in a given region. A piecewise continuous transmission rate is introduced to describe that media coverage exhibits its effect only when the number of the infected exceeds a certain critical level. Further, it is assumed that the impact of media coverage on the contact transmission is described by an exponential decreasing factor. Stability analysis of the model shows that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity. On the other hand, when the basic reproduction number is greater than unity and media coverage impact is sufficiently small, a unique endemic equilibrium exists, which is globally asymptotically stable.


Author(s):  
Manh Tuan Hoang

The aim of this work is to study qualitative dynamical properties of a generalized hepatitis B epidemic model and its dynamically consistent discrete model. Positivity, boundedness, the basic reproduction number and asymptotic stability properties of the model are analyzed rigorously. By the Lyapunov stability theory and the Poincare-Bendixson theorem in combination with the Bendixson-Dulac criterion, we show that a disease-free equilibrium point is globally asymptotically stable if the basic reproduction number $\mathcal{R}_0 \leq 1$ and a disease-endemic equilibrium point is globally asymptotically stable whenever $\mathcal{R}_0 > 1$. Next, we apply the Mickens’ methodology to propose a dynamically consistent nonstandard finite difference (NSFD) scheme for the continuous model. By rigorously mathematical analyses, it is proved that the constructed NSFD scheme preserves essential mathematical features of the continuous model for all finite step sizes. Finally, numerical experiments are conducted to illustrate the theoretical findings and to demonstrate advantages of the NSFD scheme over standard ones. The obtained results in this work not only improve but also generalize some existing recognized works.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hai-Feng Huo ◽  
Guang-Ming Qiu

A more realistic mathematical model of malaria is introduced, in which we not only consider the recovered humans return to the susceptible class, but also consider the recovered humans return to the infectious class. The basic reproduction numberR0is calculated by next generation matrix method. It is shown that the disease-free equilibrium is globally asymptotically stable ifR0≤1, and the system is uniformly persistence ifR0>1. Some numerical simulations are also given to explain our analytical results. Our results show that to control and eradicate the malaria, it is very necessary for the government to decrease the relapse rate and increase the recovery rate.


2007 ◽  
Vol 8 (3) ◽  
pp. 191-203 ◽  
Author(s):  
J. Tumwiine ◽  
J. Y. T. Mugisha ◽  
L. S. Luboobi

We use a model to study the dynamics of malaria in the human and mosquito population to explain the stability patterns of malaria. The model results show that the disease-free equilibrium is globally asymptotically stable and occurs whenever the basic reproduction number,R0is less than unity. We also note that whenR0>1, the disease-free equilibrium is unstable and the endemic equilibrium is stable. Numerical simulations show that recoveries and temporary immunity keep the populations at oscillation patterns and eventually converge to a steady state.


Sign in / Sign up

Export Citation Format

Share Document