scholarly journals Evaluation and modeling of aerodynamic properties of mung bean seeds

2015 ◽  
Vol 29 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Feizollah Shahbazi

Abstract Aerodynamic properties of solid materials have long been used to convey and separate seeds and grains during post harvest operations. The objective of this study was the evaluation of the aerodynamic properties of mung bean seeds as a function of moisture content and two grades referred to above and below a cut point of 4.8 mm in length. The results showed that as the moisture content increased from 7.8 to 25% (w.b.), the terminal velocity of seeds increased following a polynomial relationship, from 7.28 to 8.79 and 6.02 to 7.12 m s-1, for grades A and B, respectively. Seeds at grade A had terminal velocities with a mean value of 8.05 m s-1, while at grade B had a mean value of 6.46 m s-1. The Reynolds number of both grades increased linearly with the increase of seeds moisture content, while the drag coefficient decreased with the increase of moisture content. Mathematical relationships were developed to relate the change in seeds moisture content with the obtained values of aerodynamic properties. The analysis of variance showed that moisture content had a significant effect, at 1% probability level, on all the aerodynamics properties of mung beans.

2015 ◽  
Vol 29 (3) ◽  
pp. 391-396 ◽  
Author(s):  
Feizollah Shahbazi ◽  
Saman Valizadeh ◽  
Ali Dowlatshah ◽  
Ezatollah Hassanzadeh

Abstract Aerodynamic properties of solid materials have long been used to convey and separate seeds and grains during post-harvest operations. The objective of this study was evaluation of the aerodynamic properties of green and red lentil seeds as a function of moisture content from 10 to 25% (w.b.). The results showed that as the moisture content increased from 10 to 25%, the terminal velocity of seeds increased, following a linear relationship, from 6.90 to 9.14 and from 6.37 to 7.67 m s−1 for green and red lentil seeds, respectively. Seeds of the green variety had terminal velocities with a mean value of 7.89 m s−1, while the red variety had a mean value of 7.02 m s−1, for moisture content from 10 to 25%. The Reynolds number increased linearly from 2 310.90 to 3 269.23 and from 1 215.02 to 1 535.09 for green and red lentil seeds, respectively, with the increase of seeds moisture content from 10 to 25%. While, drag coefficient decreased from 0.69 to 0.40 and from 0.84 to 0.69 for green and red lentil seeds, respectively, with the increase of moisture content. Mathematical relationships were developed to relate the change in seeds moisture content with the values of aerodynamic properties obtained. The analysis of variance showed that the effect of moisture content on all aerodynamic properties of lentil beans was significant at the 1% probability level.


2014 ◽  
Vol 28 (3) ◽  
pp. 389-394 ◽  
Author(s):  
Feizollah Shahbazi ◽  
Saman Valizadeh ◽  
Ali Dowlatshah

Abstract The objective of this study was the evaluation of the aerodynamic properties of Makhobeli, triticale and wheat seeds as a function of moisture content from 7 to 27% (w.b). The results showed that the terminal velocity of triticale and wheat seeds increased linearly from 5.37 to 6.42 and from 6.31 to 8.02 m s-1, respectively, as the moisture content increased from 7 to 27%. Over this same moisture content range, the terminal velocity of Makhobeli seeds varied following a polynomial relationship from 4.52 to 5.07 m s-1. Makhobeli seeds had terminal velocities with a mean value of 4.73 m s-1, at different moisture contents, compared to the mean values of 5.89 and 7.13 m s-1 for triticale and wheat seeds, respectively. The mean value of drag coefficient was 1.12 for Makhobeli compared to the values of 0.92 and 0.85 for triticale and wheat, respectively. The analysis of variance showed that there were significant differences between the terminal velocity (at 1 % probability level) and drag coefficient (at 5% probability level) of Mak-hobeli with triticale and wheat seeds, which suggests that aerodynamic separation of Makhobeli from triticale and wheat is possible.


2016 ◽  
Vol 39 (3) ◽  
Author(s):  
Mesut Dilmac ◽  
Sefa Tarhan ◽  
Hakan Polatci

Aerodynamic properties of agricultural materials are the physical properties considering the reaction of agricultural material piles or seeds against airflow. The airflow resistance of faba bean (<italic>Vicia faba</italic> L.) seed piles was experimentally determined and mathematically modeled for two different moisture contents (11.4 % and 25.8% w.b.) for the superficial air velocities ranging from 0.0225 to 1.395 m<sup>3</sup>·m<sup>−2</sup>·s<sup>−1</sup>. Modified Shedd’s equation and Hukill-Ives equation can be interchangeably used to design aeration systems for the storage and drying bins of faba bean seeds. The terminal velocity values are 11.68 and 12.87 m·s<sup>−1</sup> for the moisture contents of 11.4% and 25.8% (w.b.), respectively. The drag coefficient values are 1.02 and 0.88 for the moisture contents of 11.4% and 25.8% (w.b.), respectively. Moisture content increased terminal velocity but decreased drag coefficient.


Author(s):  
Rahman Akinoso ◽  
Tajudeen Adeniyi Olayanju ◽  
John Ohioma Idehai ◽  
Joe Igbeka

Some physical and aerodynamic properties of two varieties of sesame seeds (Yandev -55 and E8) were determined at varied moisture content levels. These properties are factors in the design and selection of sesame seed-cleaning machines. For the Yandev-55 and E8 varieties, major diameters ranged from 2.8 mm to 3.3 mm and 3.4 mm to 3.8 mm, intermediate diameters ranged from 1.8 mm to 2.1 mm and 2.2 mm to 2.5 mm, and minor diameters ranged from 0.7 mm to 0.9 mm and 0.6 to 0.9 mm, respectively. Their geometric means ranged from 1.5 to 1.8 mm and 1.7 to 2.0 mm, their spheroids ranged from 0.5 to 0.6 and 0.5 to 0.6, and their frontal areas ranged from 1.8 to 2.6 and 2.2 to 3.2, respectively. The terminal velocities of Yandev-55 were 2.9, 3.6, 4.7 and 5.4, while the terminal velocities of E8 were 3.4, 4.12, 5.1 and 6.3 at a moisture content level of 8.0, 10.3, 15.9 and 21.2 % (w.b.), respectively. The drag coefficients were in the range of 0.4 to 2.7 while Reynolds number varied from 2775.0 to 7840.7. The terminal velocities of the associated materials within the seeds were 1.5, 2.3, 3.1, and 3.6 at a moisture content level of 8.0, 10.3, 15.9 and 21.2%, respectively. The studied properties significantly varied with the varieties of sesame seeds. Also, the effects of moisture content are non negligible.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Fan Wenyuan ◽  
Ma Youguang ◽  
Jiang Shaokun ◽  
Yang Ke ◽  
Li Huaizhi

The velocity, shape, and trajectory of the rising bubble in polyacrylamide (PAM) and carboxymethylcellulose (CMC) aqueous solutions were experimentally investigated using a set of homemade velocimeters and a video camera. The effects of gas the flowrate and solution concentration on the bubble terminal velocity were examined respectively. Results show that the terminal velocity of the bubble increases with the increase in the gas flowrate and the decrease in the solution concentration. The shape of the bubble is gradually flattened horizontally to an ellipsoid with the increase in the Reynolds number (Re), Eötvös number (Eo), and Morton number (Mo). With the increase in the Re and Eo, the rising bubble in PAM aqueous solutions begin to oscillate, but there is no oscillation phenomena for CMC aqueous solutions. By dimensional analysis, the drag coefficient of a single bubble in non-Newtonian fluids in a moderate Reynolds number was correlated as a function of Re, Eo, and Archimedes number (Ar) based on the equivalent bubble diameter. The predicted results by the present correlation agree well with the experimental data.


Author(s):  
Mohammad Jafari ◽  
Gholam Reza Chegini ◽  
Javad Khazaei

In this study, physical properties of grain and cluster straw including geometric dimensions, moisture absorption and aerodynamic properties of two wheat cultivars were investigated. The effect of cultivar on width, thickness, geometric diameter, spheroid coefficient and mass density was significant at 1% probability level whilst there were no significant effect on grain projected area, length and weight. Moisture absorption of the grains was rapid during the first 30–40 min and then turned to zero. The terminal velocity of wheat grain and straw in three shapes was measured by calculating the projected area in horizontal, lateral and perpendicular directions and then, the drag coefficient was obtained by the equilibrium of the gravity and drag forces at the terminal velocity. Results also showed that increasing moisture content resulted in an increase in the terminal velocity and a decrease in the drag coefficient. Results obtained in this study can be used in designing wheat- cluster straw separation and processing.


2019 ◽  
Vol 65 (No. 1) ◽  
pp. 7-12
Author(s):  
Zahra Basati ◽  
Ezzatollah Askari Asli- Ardeh ◽  
Vali Rasooli-Sharabiani

One of the aerodynamic characteristics of lentil is its terminal velocity. In order to determinate the terminal velocity, was designed a vertical wind tunnel. It was fabricated based on existing methods and standards. For decreasing the non-uniformity of airflow in the vertical wind column, was used a honey comb test area with 5 mesh screens. So, a wind tunnel nozzle was designed and fabricated using Morel method with the aim of increasing airflow rate and decreasing losses due to mesh screens. The height and section area of tunnel were 1.425 m and 0.1 × 0.1 m2, respectively. The pressure loss values were calculated at different parts of tunnel and then, the required power of tunnel was determined. In this study, lentil grains of Kimia and Gachsaran varieties were separated at three groups based on their size (small, medium and large). Then, the terminal velocity was measured at 5 levels of moisture content (8, 12, 16, 20 and 24% (w.b.)) for each group. The results showed that Kimia and Gachsaran variety had the highest (7.204 m·s–1) and the lowest (6.987 m·s–1) terminal velocity, respectively. The mean value of terminal velocity increased linearly from 6.751 to 7.396 m·s–1 by increasing the moisture content from 8 to 24% (w.b.). Also, by increasing the grains dimension from small to large, the terminal velocity increased from 6.345 to 7.792 m·s–1.


2014 ◽  
Vol 71 (9) ◽  
pp. 3392-3403 ◽  
Author(s):  
Andrew Heymsfield ◽  
Robert Wright

Abstract This study characterizes the terminal velocities of heavily rimed ice crystals and aggregates, graupel, and hail using a combination of recent drag coefficient and particle bulk density observations. Based on a nondimensional Reynolds number (Re)–Best number (X) approach that applies to atmospheric temperatures and pressures where these particles develop and fall, the authors develop a relationship that spans a wide range of particle sizes. The Re–X relationship can be used to derive the terminal velocities of rimed particles for many applications. Earlier observations suggest that a “supercritical” Reynolds number is reached where the drag coefficient for large spherical ice—hail—drops precipitously and the terminal velocities increase rapidly. The authors draw on observations and model simulations for slightly roughened large ice particles that suggest that the critical Reynolds number is dampened and that the rapid increase in the terminal velocity of smooth spherical ice particles rarely occurs for natural hailstones.


Author(s):  
Mehran Ghasemlou ◽  
Faramarz Khodaiyan ◽  
Seyed Mohammd Taghi Gharibzahedi ◽  
Ali Moayedi ◽  
Behnam Keshavarz

Determination of physical and mechanical properties can facilitate the design calculations of harvesting, handling, sorting and processing equipments. In this study, these properties of mungbean have been evaluated as a function of seed moisture content varying from 8.72 to 27.41% (d.b.). In this moisture range, the length, width, thickness, geometric mean diameter and surface area increased significantly (p < 0.05) from 4.32 to 5.10 mm, 3.33 to 3.54 mm, 3.30 to 3.59 mm, 3.62 to 4.01 mm and 41.1 to 50.6 mm2, respectively, whereas sphericity, porosity, bulk and true density decreased significantly (p < 0.05) from 83.80 to 78.63%, 39 to 36.56%, 841.3 to 730.7 kg/m3 and 1379.1 to 1151.8 kg/m3, respectively. Moreover, thousand seed mass, angle of repose and terminal velocity increased (p < 0.01) from 37.3 to 43.8 g, 31.6 to 40.3° and 4.9 to 5.8 m/s, respectively, by increasing the moisture content. The static coefficient of friction of mungbean seed increased against the surfaces of four structural materials, namely plywood (31.54 %), glass (29.54%), stainless steel (21.56%) and galvanized iron sheet (11.41%) as the moisture content increased from 8.72% to 27.41% d.b. Also, the results showed that the force required for initiating seed rupture decreased from 40.56 to 23.04 N and 59.82 to 19.51 N, and the energy absorbed at seed rupture increased from 7.20 to 27.36 mJ and 9.87 to 31.22 mJ by increasing in moisture content from 8.72% to 27.41% d.b. for vertical and horizontal orientations, respectively (p < 0.01).


Sign in / Sign up

Export Citation Format

Share Document