scholarly journals Effect of soil bulk density on forest tree seedlings

2015 ◽  
Vol 29 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Mariusz Kormanek ◽  
Jacek Banach ◽  
Paweł Sowa

Abstract The paper presents the results of an analysis of the influence of soil bulk density in a forest nursery plot on the growth and quality parameters of Scots pine and European beech seedlings. Particular density variants were obtained using a tractor device exerting controlled pressure on the soil, while field examinations were performed on an area of ‘Kłaj’ forest nursery in Niepołomice Forest District. Three series of plots were prepared for each species, applying a unit pressure of the values of 50, 100, 150, 200, 250 kPa, corresponding to the dry bulk density in the range of 1.03-1.19 g cm-3, and control plots without the pressure. Seeds of the examined species were sown on the prepared plots, and after 6 months of growth the seedlings were subjected to biometric analysis determining differentiation in root neck diameter, length of the above-ground part and root system, as well as dry mass of particular parts of the plant. The quality of the seedlings was also determined using the method of Schmidt-Vogt. The results obtained show that the change in dry bulk density soil significantly affected most of the growth parameters of the examined seedlings. Especially high negative correlations were obtained for the length and dry mass of the root system. A significant influence of dry bulk density variant on all growth parameters of Scots pine seedlings, and on some parameters of European beech was demonstrated. An increase in soil bulk density clearly caused also a deterioration of European beech seedlings quality

2015 ◽  
Vol 76 (3) ◽  
pp. 304-310
Author(s):  
Piotr Wrzesiński

Abstract This study examines the influence on growth parameters, in particular the morphological features of the root system, of 1-year-old European beech seedlings cultivated in containers with two different densities. The experiment was conducted in the container nursery in Skierdy (Forest District of Jabłonna) in spring 2011. After 10 months of cultivation in Hiko polyethylene containers, above- and below-ground parts of the seedlings were measured. The measurements of the root system were conducted with a scanner and the WinRHIZO software. No influence due to the seedling density on either shoot height or thickness was observed, but instead the research showed that different seedling densities affected the development of root systems. The mean root thickness and dry mass of the European beech seedlings were significantly higher at the lower density. The influence of seedling density on the development of root mass deserves special attention as it is the most important factor affecting future growth of the seedlings during cultivation. This tendency also suggests that the amount of nutrients allocated to shoot development may be higher in order to improve the efficiency of photosynthesis. At both densities, differences in biomass accumulation affected the root-toshoot ratio. In seedlings cultivated at the lower density, the increased dry root matter of the seedlings resulted in a significant increase in the root-to-shoot ratio. This may cause a potential growth advantage of these seedlings after they are planted and may thus result in a more productive cultivation.


2019 ◽  
pp. 1375-1382
Author(s):  
Tulio Martinez Santos ◽  
Edna Maria Bonfim Silva ◽  
Tonny José Araújo da Silva ◽  
Ana Paula Alves Barreto Damasceno

Soil compaction is a big limitation to food production in agriculture. Wood ash is an agro-industrial residue generated by the burning of biomass in boilers for energy production. It can be used as a corrective agent and fertilizer of the soil. In this context, the objective of this study was to evaluate the root system of safflower cultivated under bulk density levels and wood ash doses in dystrophic Oxisol. The experiment was conducted in a greenhouse with a randomized block design under a 5x5 factorial scheme composed of 5 wood ash doses (0, 8, 16, 24, 32 g dm-3) and 5 bulk density levels (1.0, 1.2, 1.4, 1.6, 1.8 Mg m-3) with 4 replicates. The soil was collected from 0-0.20 m depth layer. Later it was incubated with the respective wood ash doses. Each experimental unit consisted of a pot made of three PVC (polyvinyl chloride) rings, in which the layers of 0.1-0.2 m were compacted. At 75 days after emergence, the plants were cut, their roots washed and the volume and dry mass checked. The results were submitted to analysis of variance and subsequent regression test, both at 5% probability. Soil densities negatively influenced the root system development and culture of safflower. Application of wood ash doses of 20 to 24 g dm-3 significantly improved root development of plant.


2015 ◽  
Vol 60 (1) ◽  
pp. 11-22
Author(s):  
Mohammad Alizadeh ◽  
Alireza Allameh

A two-year research was conducted to investigate the effect of different tillage methods on some soil physical characteristics and crop yield in rapeseed cultivation after rice harvesting. Five tillage treatments including: (i) using rotavator, once to depth of 10-15 cm (T1), (ii) using rotavator, twice to depth of 10-15 cm (T2), (iii) using moldboard plow to depth of 25 cm + rotavator, once to depth of 10-15 cm (T3), (iv) no-till planting through removing rice stubbles from plots (T4), and (v) no-till planting without removing rice stubbles from plots (T5), were evaluated under randomized complete block design (RCBD) in three replications. The biannual results revealed that the effect of tillage methods was significant (p<0.01) on soil bulk density, surface residues after tillage, dry mass of weeds, seed germination, and grain yield. T2 and T3 made considerable reduction in soil bulk density compared to other treatments for the 15- to 30-cm tillage depths. In T1, T2, T3, and T4, surface residues after tillage decreased in comparison with T5 by up to 35.37, 50.71, 69.92, and 75.75%, respectively. Having 71.48 g m-2, T5 had the maximum dry mass of weeds while T3 had the minimum one with 37.50 g m-2. Means comparison represented that in T2 and T3, seed germination reached the shortest length of 6.4 days in average. The highest and lowest grain yields were acquired in T3 (1,571 kg ha-1) and T5 (1,339 kg ha-1), respectively. Statistically, there was no significant difference between T1 (1,432 kg ha-1) and T2 (1,537 kg ha-1) compared with T3 in terms of grain yield.


2015 ◽  
Vol 29 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Michel Keisuke Sato ◽  
Herdjania Veras de Lima ◽  
Pedro Daniel de Oliveira ◽  
Sueli Rodrigues

Abstract The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.


2021 ◽  
Vol 20 (5) ◽  
pp. 73-83
Author(s):  
Sławomir Świerczyński ◽  
Krzysztof Rutkowski ◽  
Ilona Świerczyńska

The comparison of the influence of foliar fertilization with four preparations on the growth of ‘Conference’ maiden pear trees growing on MA quince rootstock was conducted in a nursery in a three-year period. The evaluation was conducted on the basis of maidens growth parameters and the state of their leaf minerals content as well as on photosynthetic activity of the maiden trees. The preparations used in the experiment affected the improvement of some growth parameters studied, especially the stem diameter and fresh mass of the maidens. Biopuls Original turned out to be the best preparation as it improved significantly three out of five studied growth parameters. A varied impact of the preparations used on the content of micro and macro-elements in leaves was detected. All tested preparations positively influenced the leaves area index of maiden trees except for Blackjak preparation. Photosynthetic intensity of maiden pear trees nourished through leaves was significantly smaller in comparison with the control. Only plants treated with Biopulus Original were characterized by a higher concentration of CO2 and its level in intercellular space. The aim of the second experiment was to check the influence of the application of Trifender WP preparation with hydrogel on the growth of ‘Champion’ maiden quince trees at the stage of planting the rootstocks into a nursery. A better branching of the rootstocks was obtained after the use of the preparation with hydrogel and the hydrogel alone. The trees in these combinations were also characterized by bigger fresh and dry mass of the leaves. The influence of Trifinder WP applied in connection with hydrogel was the best.


2020 ◽  
Vol 81 (4) ◽  
pp. 167-174
Author(s):  
Jacek Banach ◽  
Mariusz Kormanek ◽  
Jakub Jaźwiński

Abstract In this study, we explore the effect of soil compaction on the growth of seedlings of Scots pine Pinus sylvestris L., European beech Fagus sylvatica L. and pedunculate oak Quercus robur L. On the experimental plots, ground contact pressures ranging from 0 to 250 kPa was applied on the soil. The applied pressure resulted in an increase in soil compaction between 1.02 to 1.19 g cm–3, which reflected pressures exerted by the undercarriage of vehicles used in logging. We then measured the seedlings as well as the dry weight of the roots and the above-ground parts. Using this data, we calculated the following quality indicators for each seedling: SQ – sturdiness quotient, S/R – shoot to root dry mass, DQI – Dickson quality index. For pedunculate oak, the SQ value significantly improved with increasing soil compaction, whereas no differences in the other two indicators were observed. In case of the European beech, the best value of SQ and DQI were observed at a soil density of 1.11 g cm–3, whilst no significant difference for the S/R coefficient could be found. Completely different results were obtained for Scots pine. The most favorable growth was observed when no pressure was applied. However, the SQ and S/R ratios even exceeded the values commonly considered acceptable. Our results therefore indicate that the values of seedling quality indicators are indeed influenced by soil compaction. At a soil compaction of 1.11 g cm–3, the share of seedlings with the SQ value below the critical level was the highest, but a similar relationship could not be confirmed for the other indicators. The response of the seedlings to compaction is likely to be species specific.


1996 ◽  
Vol 76 (3) ◽  
pp. 545-550 ◽  
Author(s):  
S. M. Landhäusser ◽  
K. J. Stadt ◽  
V. J. Lieffers ◽  
D. H. McNabb

In a series of experiments, we investigated rhizome spread and the growth of C. canadensis, as governed by changes in soil bulk density and nutrient availability. The ability of rhizomes originating from vigorous Calamagrostis canadensis plants to penetrate mineral soil with different bulk densities and their response to various nutrient conditions were assessed in a split container experiment. Decreasing biomass and length of rhizomes with increasing soil bulk density showed that clonal expansion of C. canadensis onto areas of exposed mineral soil from adjacent swards was limited mainly by soil bulk density. No nutrient effect on rhizome growth was detectable; the rhizomes were probably well supplied with nutrients by translocation from the mother plant. Results of a second split container experiment indicated that rhizome growth was better in organic than in mineral soils. In a third experiment, entire C. canadensis plants were grown in mineral soil at different levels of soil bulk density and nutrient condition. Here, rhizome biomass and expansion were limited mainly by nutrient availability; however, once the nutritional needs of the plants were met, increasing bulk density reduced the amount of rhizome spread. These results could be useful in reforestation, e.g. selecting those methods of site preparation which reduce the growth and competitive ability of C. canadensis relative to tree seedlings. Key words: Compaction, rhizome, litter, mineral soil, yield, Calamagrostis canadensis


2012 ◽  
Vol 51 (No. 12) ◽  
pp. 548-558
Author(s):  
A. Bártová ◽  
O. Mauer

The goal of the study was to verify the effect of growth substances from the group of auxinoids on the root system of European beech and Scots pine planting stock. The effect of growth substance application date (spring, summer dipping), the type of growth substance used (IBA, NAA), and the exposition to the growth substance (1, 2, <br />5 hours) were studied. The tests showed that the application of NAA and IBA did not stimulate the root system growth in Scots pine at any exposition of root systems to the growth substances. European beech exhibited a favourable effect of the 5-hour IBA exposition in the spring dipping. The summer dipping of European beech did not show a complex beneficial effect on the root system development at any of the expositions.


2010 ◽  
Vol 30 (2) ◽  
pp. 127-132
Author(s):  
Jinbo ZAN ◽  
Shengli YANG ◽  
Xiaomin FANG ◽  
Xiangyu LI ◽  
Yibo YANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document