Photocatalytic Activity for NO Degradation by Construction Materials: Parametric Study andMultivariable Correlations

Author(s):  
N. Bengtsson ◽  
M. Castellote

AbstractVarious standards have been published in an effort to rationalize and unify the evaluation and quantification of photocatalytic activity. The experimental conditions stated in the published standards and test methods differ in many aspects that make it very difficult to compare different results. This paper focuses on the influence of the different parameters involved in the photocatalytic process. The photocatalytic active material consists of white mortar, surface coated by TiO

2011 ◽  
Vol 335-336 ◽  
pp. 1385-1390 ◽  
Author(s):  
Shuo Wiei Zhao ◽  
Hui Xu ◽  
Hua Ming Li ◽  
Yuan Guo Xu

In order to improve the photocatalytic activity, Co was successfully loaded into Ag3VO4 by using impregnation process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectroscopy (DRS). The XRD and SEM–EDS analyses revealed that Co ion was dispersed on Ag3VO4. The DRS results indicated that the absorption edge of the Co–Ag3VO4 catalyst shifted to longer wavelength. The enhanced photocatalytic activity of Co–Ag3VO4 for Methylene Blue(MB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. In the experimental conditions, it is demonstrated that the MB was effectively degraded by more than 95% within 40 min when the Co–Ag3VO4 catalyst was calcined at 300°C with 1 wt.% Co content.


Air pollution is the major concern in the recent years because of causing imbalance to the ecosystem and also increases global warming and climate change. This paper, tries to investigate the applicability of photo catalytic cement in removing the pollutants under partially controlled and simpler experimental conditions such that it mimics the ideal state of its use, that is the natural open environment where it always is susceptible to complex physical and chemical interactions. It also gives an overview of the concentrations of the contaminants reduced not limiting to NOx residues alone, by employing Ion Chromatography instead of NOx analyzers.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1102
Author(s):  
Wojciech Baran ◽  
Ewa Masternak ◽  
Dominika Sapińska ◽  
Andrzej Sobczak ◽  
Ewa Adamek

The aim of our study was to assess the possibility of using the photocatalytic process conducted in the presence of TiO2 to obtain new stable derivatives of antibacterial drugs. The possibility of introducing hydroxyl, chlorine, or bromide groups into antibiotics molecules was investigated. The experiments were conducted in aqueous solutions in the presence of TiO2-P25 as a photocatalyst, Cl− and Br- ions, and antibiotics belonging to eight different chemical classes. All experiments were initiated by UVa radiation. The kinetics of photocatalytic reactions and their quantum yield were determined, and the stable products were identified. All of the antibiotics used in the experiments underwent a photocatalytic transformation, and the quantum yields were in the range from 0.63 to 22.3%. The presence of Br- or FeCl3 significantly increased the efficiency of the photocatalytic process performed in the presence of TiO2, although Br- ion also acted as an inhibitor. Potentially biologically active chlorine derivatives from Trimethoprim, Metronidazole, Chloramphenicol, and bromine derivatives from Trimethoprim, Amoxicillin were obtained under experimental conditions. The potentially inactive halogen derivatives of Sulfamethoxazole and hydroxyl derivatives described in the literature were also identified.


2014 ◽  
Vol 1010-1012 ◽  
pp. 961-965
Author(s):  
Jian Qiang Xiao ◽  
Guo Wei He ◽  
Yan Jin Hu

Bauxite waste sludge as a raw material, the use of reverse chemical coprecipitation synthesize Fe3O4. Researching temperature, precipitation concentration, aging time and Fe2+/Fe3+ molar ratio effect on the particle size, morphology. Optimal experimental conditions: temperature 70 °C, the precipitant NaOH mass ratio of 10%, aging time 3h, Fe2+/Fe3+ molar ratio of 2:3. Test methods using a laser particle size analyzer, XRD analysis of the products were characterized, the product is Fe3O4, the average particle size of 0.11mm.


2020 ◽  
Vol 19 (3) ◽  
pp. 399-405
Author(s):  
Joel Molina-Reyes ◽  
Alejandra Romero-Morán ◽  
José L. Sánchez-Salas

Experimental conditions to fabricate rutile-TiO2 nanotubes coated with a conformal anatase-TiO2 thin layer using ALD were reported. A considerable increase in the photocatalytic activity associated with these surface modifications was also observed.


RSC Advances ◽  
2016 ◽  
Vol 6 (72) ◽  
pp. 68416-68423 ◽  
Author(s):  
Hua'nan Cui ◽  
Zhenxing Liang ◽  
JinZhong Zhang ◽  
Hong Liu ◽  
Jianying Shi

The surface/interface synergy effect plays a positive role on the spatial separation and utilization of electrons and holes in photocatalytic process, which suggests a potential strategy for designing high efficiency photocatalysts.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 606 ◽  
Author(s):  
Ewa Szewczak ◽  
Agnieszka Winkler-Skalna ◽  
Lech Czarnecki

The laboratory testing of the construction materials and elements is a subset of activities inherent in sustainable building materials engineering. Two questions arise regarding test methods used: the relation between test results and material behavior in actual conditions on the one hand, and the variability of results related to uncertainty on the other. The paper presents the analysis of the results and uncertainties of the simple two independent test examples (bond strength and tensile strength) in order to demonstrate discrepancies related to the ambiguous methods of estimating uncertainty and the consequences of using test methods when method suitability for conformity assessment has not been properly verified. Examples are the basis for opening discussion on the test methods development direction, which makes possible to consider them as ‘sustainable’. The authors address the negative impact of the lack of a complete test models taking into account proceeding with an uncertainty on erroneous assessment risks. Adverse effects can be minimized by creating test methods appropriate for the test’s purpose (e.g., initial or routine tests) and handling with uncontrolled uncertainty components. Sustainable test methods should ensure a balance between widely defined tests and evaluation costs and the material’s or building’s safety, reliability, and stability.


Sign in / Sign up

Export Citation Format

Share Document