Effects of selenium, zinc, insulin and metallothionein on cadmium-induced oxidative stress and metallothionein gene expression levels in diabetic rats

Author(s):  
Huseyin Gungor ◽  
Haki Kara

AbstractBackgroundThe aim of this study was to investigate the effects of selenium, zinc, insulin, and metallothionein on oxidative damage and metallothionein (MT) gene expression levels in streptozotocin (STZ)-induced type 1 diabetic rats exposed to Cd.MethodsRats were categorized under eight groups (control, STZ, Cd, STZ + Cd, Group 5, Group 6, Group 7, and STZ + Cd + MT [n:8/group]) were used. After diabetes was induced by STZ (55 mg/kg, i.p.), Cd was administered (1 mg/kg CdCl, orally) for 4 weeks. In cadmium-treated groups selenium (Na2SeO3 1.5 mg/kg, i.p.), zinc (ZnSO4 10 mg/kg via oral gavage), insulin (insulin glargine, 2U/day, s.c.), and MT (1mg/kg, every other 10 days, s.c.) were administered. MT gene expression levels, MDA levels, GPx, SOD, and CAT activity levels were determined in liver and kidney tissues.ResultsMT gene expression and MDA levels increased (p < 0.05) while GPx and SOD activity levels decreased (p < 0.05) in STZ, Cd, and STZ + Cd groups. In Group 5, Group 6, Group 7, and Group 8 groups MT gene expression and MDA levels were decreased while GPx and SOD activity levels were increased (p < 0.05). CAT activity significantly increased (p < 0.05) in STZ + Cd group while there were no significance in other groups (p > 0.05). Compared to the control, Group 5, Group 6, Group 7, and Group 8 groups provided no difference for alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen and creatinine levels (p > 0.05).ConclusionsOur results suggest that Se, insulin, Zn and MT may have protective effects against hepatotoxicity and nephrotoxicity caused by Cd exposure in diabetic rats by reducing oxidative stress and MT gene expression levels.

2020 ◽  
Vol 27 (7) ◽  
pp. 614-622
Author(s):  
Ahmet Savcı ◽  
Enver Fehim Koçpınar ◽  
Harun Budak ◽  
Mehmet Çiftci ◽  
Melda Şişecioğlu

Background: Free radicals lead to destruction in various organs of the organism. The improper use of antibiotics increases the formation of free radicals and causes oxidative stress. Objective: In this study, it was aimed to determine the effects of gentamicin, amoxicillin, and cefazolin antibiotics on the mouse heart. Methods: 20 male mice were divided into 4 groups (1st control, 2nd amoxicillin, 3rd cefazolin, and 4th gentamicin groups). The mice in the experimental groups were administered antibiotics intraperitoneally at a dose of 100 mg / kg for 6 days. The control group received normal saline in the same way. The gene expression levels and enzyme activities of SOD, CAT, GPx, GR, GST, and G6PD antioxidant enzymes were investigated. Results : GSH levels decreased in both the amoxicillin and cefazolin groups, while GR, CAT, and SOD enzyme activities increased. In the amoxicillin group, Gr, Gst, Cat, and Sod gene expression levels increased. Conclusion: As a result, it was concluded that amoxicillin and cefazolin caused oxidative stress in the heart, however, gentamicin did not cause any effects.


2020 ◽  
Author(s):  
Hansapani Rodrigo ◽  
Bryan Martinez ◽  
Roberto De La Garza ◽  
Upal Roy

Abstract Background: HIV Associated Neurological Disorders (HAND) is relatively common among people with HIV-1 infection, even those taking combined antiretroviral treatment (cART). Genome-wide screening of transcription regulation in brain tissue helps in identifying substantial abnormalities present in patients’ gene transcripts and to discover possible biomarkers for HAND. This study explores the possibility of identifying differentially expressed (DE) genes, which can serve as potential biomarkers to detect HAND. In this study, we have investigated the gene expression levels of three subject groups with different impairment levels of HAND along with a control group in three distinct brain sectors: white matter, frontal cortex, and basal ganglia. Methods: Linear models with weighted least squares along with Benjamini-Hochberg multiple corrections were used to identify DE genes in each brain region. Genes with an adjusted p-value of less than 0.01 were identified as differentially expressed. Principal component analyses (PCA) were performed to detect any groupings among the subject groups. Significance Analysis of Microarrays (SAM) and random forests (RF) methods with two distinct approaches were used to identify DE genes. Results: A total of 710 genes in basal ganglia, 794 genes in the frontal cortex, and 1481 genes in white matter were screened. The highest proportion of DE genes was observed within the two brain regions, frontal neocortex, and basal ganglia. PCA analyses do not exhibit clear groupings among four subject groups. SAM and RF models reveal the genes, CIRBP, RBM3, GPNMB, ISG15, IFIT6, IFI6, and IFIT3, to have DE genes in the frontal cortex or basal ganglia among the subject groups. The gene, GADD45A, a protein-coding gene whose transcript levels tend to increase with stressful growth arrest conditions, was consistently ranked among the top genes by both RF models within the frontal cortex. Conclusions: Our study contributes to a comprehensive understanding of the gene expression levels of the subject with different severity levels of HAND. Several genes that appear to play critical roles in the inflammatory response have been found, and they have an excellent potential to be used as biomarkers to detect HAND under further investigations.


2017 ◽  
Vol 26 (04) ◽  
pp. 218-222
Author(s):  
S. Shafiee ◽  
F. Noorabad-Ghahroodi ◽  
A. Amirfarhangi ◽  
S. Hosseini-Fard ◽  
Z. Sharifi ◽  
...  

AbstractNeointimal hyperplasia is known as a main factor contributing to in-stent restenosis (ISR). Monocytes may play a central role in vessel restenosis process after stent implantation. The aim of this study was to investigate the relationships between the urokinase-type plasminogen activator (PLAU) and vitronectin (Vtn) gene expression levels in peripheral blood mononuclear cell samples isolated from whole blood of 66 patients undergoing coronary artery angiography (22 controls, stenosis < 0.05%; 22 with stent no-restenosis and stenosis < 70%; and 22 with ISR and stenosis > 70%). The Vtn and PLAU gene expression levels were measured by real-time quantitative polymerase chain reaction technique. The age- and gender-independent increases in the expression levels of Vtn (17-fold; p < 0.001) and PLAU (27-fold; p < 0.0001) genes were found in the patients with ISR as compared with the control group. The results suggested that the Vtn and PLAU genes may be involved in the coronary artery ISR.


2018 ◽  
Vol 42 (1-2) ◽  
pp. 23-29
Author(s):  
Sayed R. Hosseini-Fard ◽  
Mohsen Khosravi ◽  
Amaneh Yarnazari ◽  
Parisa Hassanpour ◽  
Abdollah Amirfarhangi ◽  
...  

AbstractBackground:The metabolism of cholesteryl esters (CEs) is under the control of a gene network in macrophages. Several genes such asATF3andEGR2are related to cholesterol metabolism.Methods:In this study, theATF3andEGR2gene expression levels were evaluated in differentiated macrophages of subjects undergoing coronary artery angiography [controls (<5% stenosis), patients (>70% stenosis)] after treatment with small dense low density lipoprotein (sdLDL) particles. Monocytes were isolated using a RosetteSep Kit and were differentiated into macrophages using the M-CSF factor. A modified heparin-MgSO4-PEG method was used for the sdLDL preparation. TheATF3andEGR2gene expression levels were measured by the real-time quantitative polymerase chain reaction (RT-qPCR) technique.Results:In contrast with the control group (p=0.4), theATF3expression level reduced significantly in the differentiated macrophages from all patients [single vessel disease (SVD), fold change 17 times, p=0.02; two vessel disease (2VD), fold change 1.5 times, p=0.05; three vessel disease (3VD), fold change 3.5 times, p=0.04]. Also, theEGR2expression level reduced significantly in all groups (p<0.02). The gene fold changes had no significant differences between the patients (p>0.8).Conclusions:We propose that the failure ofATF3gene expression improves the CE synthesis after sdLDL influx. Furthermore, the reducedEGR2gene expression level in the sdLDL-treated groups may be a negative factor in cholesterol homeostasis.


2018 ◽  
Vol 5 (9) ◽  
pp. 2658-2663 ◽  
Author(s):  
Vahid Amiri ◽  
Mohamadhossein Mohammadi ◽  
Mohammad Reza Khosravi Farsani ◽  
Arshia Gharehbaghian ◽  
Abbas Hajifathali ◽  
...  

Introduction: Gene mutation is an infrequent cause of tumor suppressor gene (TSG) defect in de novo AML patients. Instead, it seems that leukemic cells employ epigenetic tricks to attenuate the negative impacts of intact TSGs. Ordinarily, critical TSGs, such as p16INK4A, is hyper-methylated in AML blasts under the impact of master epigenetic regulators, such as UHRF1. In this study, we investigated the correlation between UHRF1 and p16INK4A gene expression levels in newly diagnosed AML patients. Methods: Bone marrow and peripheral blood samples were obtained from 50 newly diagnosed AML patients and 18 healthy normal control subjects. Gene expression levels of UHRF1 and P16INK4A were surveyed using SYBR Green Quantitative Real-time PCR. Statistical analyses were done using SPSS statistical software 21.0. Results: P16INK4A gene expression showed reduced levels in 80.64% of patients above 45 years of age, while only 32% of patients below 45 years had reduced expression levels. The Spearman correlation test also demonstrated a significant negative correlation between UHRF1 and p16INK4A gene expression levels in AML patients, which was not observed in the control group (r=0.343 and P= 0.015). Conclusion: Regarding the age-related patterns of UHRF1 and p16INK4A gene expression, and also the presence of negative correlation between them, we conclude that UHRF1 may potentially be involved in p16INK4A down-regulation in elderly AML patients, which may subsequently facilitate the progression of AML in older ages.  


Author(s):  
Nefise Kandemir ◽  
Sercan Kenanoglu ◽  
Murat Gultekin ◽  
Nuriye Gokce ◽  
Hilal Akalin ◽  
...  

Background Essential tremor (ET) is the most common movement disorder. Propranolol is a first-line medication for ET. We aimed to evaluate the effect of propranolol on the expression of poly (ADP-ribose) polymerase 1 (PARP1) and DNA polymerase beta (POLB) genes, which are known to be related to neurodegenerative diseases, in patients with ET. MethodsThirty-five healthy volunteers and thirty-five patients followed up with essential tremors were included in a non-randomized control experimental study. Expressions of PARP1 and POLB genes were compared between the control group and the patient group. In addition, pre- and post-treatment gene expression levels and Fahn-Tolosa-Marin tremor scale values of the patient group were compared after 8 weeks of propranolol treatment. The Wilcoxon rank and Mann Whitney U tests were used to analyze the data. ResultsAt baseline, PARP1 expression was significantly lower in the ET group than in the control group. (p<0.001). POLB gene expression was significantly higher in the pre-treatment ET group than in the controls (p<0.05). There was no significant difference in PARP1 expression levels before and after 8 weeks of propranolol treatment. POLB gene expression was significantly higher in the pre-treatment group than in the post-treatment group (p<0.001). ConclusionPropranolol significantly decreased POLB gene expression but there was no significant difference in PARP1 gene expression levels in the patient group, after 8 weeks of propranolol treatment.


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Myron D Gross ◽  
Bharat Thyagarajan ◽  
Sithara Vivek ◽  
David R Jacobs

Introduction: High blood pressure (BP) is a global public health problem that is strongly associated with many aspects of cardiovascular disease. Approximately 90% of hypertension cases have unknown cause. Studies of white blood cell gene expression may help to clarify the pathobiology. Methods: Gene expression (25 genes) was assayed in CARDIA at the Year 25 Exam (N=3,074 black and white men and women in 4 US cities, examined in 2010-2011, age 42-56 years). Whole blood was collected in PAXgene Blood RNA tubes; mRNA was isolated using the PAXgene Blood RNA kit (Qiagen Inc., Germantown, MD). The nCounter analysis system (Nanostring Inc., Seattle, WA) was used to measure expression of 25 genes related to inflammation and oxidative stress. Gene expression levels were logarithmically (base 2) transformed to approximate a normal distribution, so 1 unit higher represents doubling of the expression. Average cumulative sitting rest BP exposure was calculated (N=2,823) as the time weighted average across ≥5 BP measurements among 9 CARDIA exams with ≥1 measurement in each of Set 1 Years 0, 2, 5, 7; Set 2 Years 10, 15; and Set 3 Years 20, 25, 30. We added 10 mmHg to the systolic BP and 5 mmHg to the diastolic BP at visits in which antihypertensive medications were used. Linear regression estimated associations between dependent variables cumulative systolic and diastolic BP and each of the 25 gene expression levels, adjusting for age, race, sex, clinic, and year 25 body mass index. Hypertension at year 25 was defined as BP >140/90 mmHg or taking antihypertensive medications and pre-hypertension at year 25 was defined as BP between 121-139/81-90 mmHg, not taking antihypertensive medications. Unconditional logistic regression models were used to estimate the cross sectional association between hypertension and gene expression after adjusting for the covariates mentioned above. Results: The mean ± standard deviation for cumulative systolic BP was 113±11 mm Hg and for cumulative diastolic BP was 72±8 mmHg. NADH Dehydrogenase [Ubiquinone] 1 Beta Subcomplex Subunit 3 ( NDUFB3) , a mitochondrial gene involved in the electron transport chain was significantly associated with both cumulative systolic (β=1.549; p<0.0001) and diastolic BP measures (β=1.281 mmHg/1 log 2 unit of expression; p<0.0001), even after Bonferroni correction. Other genes had weaker signals. Consistent with these observations, hypertension (n=898) at year 25 (OR: 1.737; p<0.001) and pre-hypertension (n=1,127) at year 25 (OR:1.288; p=0.005) were also associated with increased NDUFB3 expression. Conclusions: Expression of the NDUFB3 gene, an element of oxidative stress, was associated with BP assessed throughout young adult and middle age and with concurrent hypertension.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Abraham Said Arellano-Buendía ◽  
Fernando Enrique García-Arroyo ◽  
Magdalena Cristóbal-García ◽  
María Lilia Loredo-Mendoza ◽  
Edilia Tapia-Rodríguez ◽  
...  

Recent studies suggest that tubular damage precedes glomerular damage in the progression of diabetic nephropathy. Therefore, we evaluated oxidative stress and urinary excretion of tubular proteins as markers of tubular dysfunction.Methods.Diabetes was induced in rats by streptozotocin administration (50 mg/kg). Oxidative stress was assessed by measuring the activity of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD); additionally, expression levels of 3-nitrotyrosine (3-NT), 4-hydroxynonenal (4-HNE), and oxidized protein (OP) were quantified. Whole glomerular filtration rate (GFR) was measured. Urinary excretion of neutrophil gelatinase-associated lipocalin (uNGAL), osteopontin (uOPN), and N-acetyl-β-D-glucosaminidase (uNAG) was also determined.Results.Diabetic rats showed an increase in uNGAL excretion 7 days following induction of diabetes. Diuresis, proteinuria, albuminuria, creatinine clearance, and GFR were significantly increased by 30 days after induction. Furthermore, there was an increase in both CAT and SOD activity, in addition to 3-NT, 4-HNE, and OP expression levels. However, GPx activity was lower. Serum levels of NGAL and OPN, as well as excretion levels of uNGAL, uOPN, and uNAG, were increased in diabetics. Tubular damage was observed by 7 days after diabetes induction and was further aggravated by 30 days after induction.Conclusion.The tubular dysfunction evidenced by urinary excretion of NGAL precedes oxidative stress during diabetes.


Sign in / Sign up

Export Citation Format

Share Document