Decreased expression of annexin A2 and loss of its association with vascular endothelial growth factor leads to the deficient trophoblastic invasion in preeclampsia

Author(s):  
Komal Ruikar ◽  
Manjunatha Aithala ◽  
Praveenkumar Shetty ◽  
Udupi Shastry Dinesh ◽  
Anil Bargale ◽  
...  

Abstract Objectives Preeclampsia (PE) remains the major cause for maternal and foetal mortality and morbidity. Invasion of endovascular trophoblast and remodelling of spiral artery are crucial actions of normal placental development. Non-fulfilment of these processes plays a leading role in the development of preeclampsia. Vascular endothelial growth factor (VEGF) is produced by extravillous trophoblastic tissue and decidual cell population is a well-known angiogenic growth which plays a fundamental role in placental pathogenesis of PE. Annexin A2 (ANXA2) is a profibrinolytic protein receptor required for plasminolysis, which is an important step in the formation of new blood vessel along with VEGF. Role of ANXA2 is poorly studied in context with human reproductive disease like preeclampsia. The purpose of the present study is to examine the expression and association of VEGF and ANXA2 in the term placentas of pregnancies with and without PE. Methods The study group comprised of placental tissues procured from gestations with PE (n=30) and without (n=20) PE. The expression of VEGF and ANXA2 in the placental villous tissue was evaluated quantitatively by means of IHC, western blotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Results Our IHC, western blotting and RT-PCR analysis illustrated the significant decrease in the expression of VEGF and ANXA2 in PE group compared with the normotensive control group (p<0.005). We observed statistically significant positive correlation among the expression of ANXA2 and VEGF in placentas of normotensive control group (p<0.0001). Conclusions The diminished expression of VEGF and ANXA2 in placenta may be associated with the defective angiogenesis and which may possibly play a vital role in PE pathogenesis.

2007 ◽  
Vol 292 (1) ◽  
pp. F158-F167 ◽  
Author(s):  
Laura E. Burt ◽  
Michael S. Forbes ◽  
Barbara A. Thornhill ◽  
Susan C. Kiley ◽  
Robert L. Chevalier

Obstructive nephropathy constitutes a major cause of renal impairment in children. Chronic unilateral ureteral obstruction (UUO) impairs maturation of the developing kidney and leads to tubular apoptosis and interstitial inflammation. Vascular endothelial growth factor (VEGF) is involved in recovery from various forms of renal injury. We questioned whether the renal expression of endogenous VEGF and its receptor (VEGFR2/Flk-1) is modified by UUO in early development. Neonatal rats were subjected to partial or complete UUO or sham operation. The distribution of immunoreactive VEGF in each kidney was examined after 7, 14, or 28 days. Adult rats were also subjected to sham operation or complete UUO. Tubular VEGF increased between 14 and 28 days in sham-operated rats and in some partially obstructed neonatal rats but decreased with complete UUO. Parallel changes were found by Western blotting, but not by RT-PCR. Immunoreactive VEGF colocalized with mitochondria in proximal and distal tubules and also appeared in type A intercalated cells, glomerular vascular endothelium, and podocytes. While neonatal microvascular renal VEGFR2 receptor staining was strongly positive regardless of UUO, staining was weak in sham-operated adults but increased following UUO. Parallel changes in VEGFR2 expression were verified by RT-PCR and Western blotting. We conclude that endogenous renal VEGF is developmentally regulated in the neonatal rat and is differentially regulated by partial and complete UUO. Following UUO in the adult, the VEGF receptor is upregulated. Endogenous VEGF may serve an adaptive role in responding to tubular injury caused by UUO and may modulate adaptation by the contralateral kidney.


2021 ◽  
Vol 11 (11) ◽  
pp. 4976
Author(s):  
Aleksandra Palatyńska-Ulatowska ◽  
Marta Michalska ◽  
Anna Drelich ◽  
Aleksandra Sałagacka-Kubiak ◽  
Ewa Balcerczak ◽  
...  

Vascular endothelial growth factor (VEGF)-induced angiogenesis contributes to inflammatory bone resorption in humans. Widely documented antagonists to resorption include antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs). The purpose of this study was to investigate the effect of these drugs on proangiogenic VEGF levels in periradicular lesions. Periapical tissue biopsies were obtained from 42 patients with chronic periapical periodontitis. VEGF levels were measured using a commercial ELISA kit in patients divided into groups according to treatment: no drugs (control group, n = 25), NSAIDs (n = 7), antibiotics (n = 5), and NSAIDs and antibiotics (n = 5). Reverse transcriptase (RT) reaction was performed in all the samples under analysis. Presence of VEGFA and VEGFB gene expression was assessed using reverse-transcription-polymerase chain reaction (RT-PCR). ELISA analysis indicated that average VEGF levels in tissue samples of patients treated with NSAIDs (6.097 ± 1.930 ng/mL), antibiotics (5.661 ± 2.395 ng/mL), and NSAIDs and antibiotics (7.142 ± 2.601 ng/mL) were significantly lower than in samples of control patients (10.432 ± 4.257 ng/mL, ANOVA p = 0.008). The RT-PCR did not reveal VEGFA gene expression in any of the 42 samples. VEGFB gene expression was found in 26 of 42 samples (69.1%). The use of NSAIDs or antibiotics in patients with exacerbated chronic periodontitis decreases VEGF levels in periapical tissues. Pharmacotherapy may minimize the effects of VEGF on apical periodontitis progression in that way.


Author(s):  
YanuarEka P. ◽  
Hendy Hendarto ◽  
Widjiati .

Retrograde menstruation lead to I Kappa B Kinase (IKK) fosforilation in peritoneum macrophage and cause secretion of proinflammatory cytokine interleukin1β then stimulate endometriosis cell to produce Vascular Endothelial Growth Factor which lead to increasing of endometriosis lession seen as endometriosis implant area. Cytokine secretion was inhibited through prevention of NF-κB activation by dragon red fruit rind extract (Hylocereuspolyrhizus). The aim of this reserach is to know the effect of dragon red fuit rind extract with 0,25; 0,5; and 1 mg/g bodyweight dosage toward IL-1β, VEGF expression and implant area in endometriosis mice model. The design of this experiment was randomized post test only control group design.Endometrios mice model were made in 14 days and split into two group, positive control group and treatment group after two week negative control group and postive control group were given Na-CMC 0,5% solution consequetively, and treatment group were given dragon red fruit extract with different dosage. Signification number for IL-1β is p>0,05, signification number for VEGF is p>0,05, and implant area signification number is p>0,05. Administration of dragon red fruit rind extract can decrease IL-1β, VEGF, and implant area.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Taylor Y Lu ◽  
Courtney K Domigan ◽  
Vaspour Antanesian ◽  
Yasuhiro Nakashima ◽  
Atsushi Nakano ◽  
...  

Vascular endothelial growth factor (VEGF) is one of the pivotal proangiogenic growth factors that has long contributed to our knowledge of blood vessel and circulatory maintenance as well as angiogenesis in both pathology and pathophysiology. However, the non-canonical functions of VEGF in cardiac morphogenesis have not been well characterized. Here, we examined how VEGF regulates cardiomyocyte cell fate. Using chimeric embryos harboring both wild type and VEGF-null embryonic stem cells, we observed that derivatives of VEGF null cells were preferentially recruited to the atrium of the heart in comparison to the ventricles. To further provide physiologic context of this finding, we used reporter-LacZ staining and RT-PCR and found that endogenous VEGF was indeed expressed at much lower levels in the atrium but highly expressed in the ventricle early in cardiac morphogenesis. These data lead to our hypothesis that cell-autonomous expression of VEGF is a determinant of atrial vs. ventricular cardiomyocyte cell fate. To test this hypothesis, we used a VEGF knock-in mouse model of Sm22Cre x Rosa 26 VEGF. VEGF overexpression in cardiomyocytes (and smooth muscle) at E8.5 resulted in lethality by P1 and thickened atrial and ventricular walls in mutant embryos as characterized by histology (H&E, IF). We further explored the molecular changes underlying this phenotype via microarray and RT-PCR and find disruptions in molecular markers necessary for wall development, specifically: Notch-1, BMP10, Nrg-1. Taken together, our data indicates that aberrant embryonic VEGF signaling disrupts several critical signaling pathways and that overexpression leads to disruption of cardiomyocyte proliferation and cardiac morphogenesis. These findings add to the foundation of better understanding heart development, laying the groundwork for future therapy of congenital and acquired cardiac disease.


2014 ◽  
Vol 58 (2) ◽  
pp. 255-260
Author(s):  
Aleksandra Sobczyńska-Rak ◽  
Izabela Polkowska ◽  
Adam Brodzki

Abstract The aim of the study was to determine the levels of the vascular endothelial growth factor (VEGF) in the serum of dogs suffering from splenic malignant tumours, prior to splenectomy, as well as three and six months after the surgery. Tumours and blood samples were collected from 10 dogs of various breeds, aged between 7 and 13 years, and from 10 control animals. Tumour sections were fixed in 10% buffered formalin for 24 h. The type of tumour was determined according to the WHO classification. Blood samples were centrifuged and the obtained sera were subjected to immunoenzymatic assays to determine the VEGF levels. The median of VEGF levels in the serum of dogs suffering from splenic malignant tumours was 37.85 pg/mL (15.40-107.18 pg/mL). The highest values were observed in dogs with confirmed metastases (107.18 pg/mL and 65.43 pg/mL). The VEGF values in control group were between 0.1 pg/mL and 13.04 pg/mL. A comparative analysis of the VEGF levels against the animals' survival time indicated that VEGF overexpression may serve as a prognostic factor in cases of malignant tumours of the spleen.


2021 ◽  
Vol 11 (5) ◽  
pp. 841-846
Author(s):  
Wei Li ◽  
Yufang Zhang ◽  
Fuping Li ◽  
Yufen Shi ◽  
Yan Wang

Polycystic ovary syndrome (PCOS) is a female endocrine disorder and frequently leads to infertility. Vascular endothelial growth factor (VEGF) has crucial roles and matrix metalloproteinase (MMPs) is correlated with cell migration. Both of them are involved in the occurrence and progression of PCOS. This study established a rat PCOS model using letrozole to measure the expression of VEGF, MMP-2 and MMP-9 (MMP-2/9), to analyze its correlation with PCOS. Letrozole was applied by gavage to establish rat PCOS model. General condition and ovarian tissue morphology were observed under a light field microscope. ELISA and immunohistochemistry (IHC) were used to detect serum or tissue expression of VEGF, MMP-2/9. Estrous cycle of rats was disrupted after 12 d for using letrozole. Vaginal smear showed abundant leukocytes with sparse keratinocytes. Ovary showed whitening and increased volume, with early phase small follicles plus lower granular cells or corpus luteum. Compared to control group, experimental group had significantly higher VEGF, MMP-2/9 (P < 0.05), which were higher in antral follicles than those in preantral follicle with higher expressions than primordial follicle (P < 0.05). In conclusion, VEGF, MMP-2/9 are abundantly expressed in both serum and tissues of PCOS rats.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Alexandra H Smith ◽  
Michael A Kuliszewski ◽  
Hiroko Fujii ◽  
Duncan J Stewart ◽  
Jonathan R Lindner ◽  
...  

We have previously shown that ultrasound-mediated (UM) delivery of vascular endothelial growth factor (VEGF) plasmid-bearing microbubbles promotes therapeutic angiogenesis. While VEGF is important during the initiation of angiogenesis, it results in primarily immature vessels, which are prone to late regression. Angiopoietin (Ang)-1 is a potent growth factor that acts to stabilize the neovasculature, later in the angiogenic process. We hypothesized that temporal delivery of VEGF and Ang-1 plasmid DNA would result in a more sustained angiogenic response, as compared to VEGF alone, in the setting of severe chronic ischemia. Methods : Unilateral hindlimb ischemia was produced by iliac artery ligation in 30 rats. At day 14 post-ligation, microvascular blood velocity (β) and flow (MBF) in the proximal hindlimb muscles were assessed by contrast-enhanced ultrasound (CEU). UM-delivery of plasmid (500 μg cDNA)-bearing microbubbles (1×109), was then performed at pre-specified time points, with treatment groups including VEGF alone at day 14; VEGF at day 14 followed by Ang-1 at day 28; and control rats receiving no therapy (n=10 per group). β and MBF were re-assessed at day 28 and 8 wks post-ligation. Results : Relative MBF (normalized to the contralateral normal leg) remained reduced at all time points after ligation in the control group. In VEGF-alone treated animals, MBF in the ischemic leg increased 2 wks after delivery (0.48 ± 0.19 to 0.82 ± 0.23, p < 0.001), but regressed over the next 4 wks (0.61 ± 0.14 at 8 wk, NS vs. 2 wks). In the VEGF/Ang-1 treated animals, MBF in the ischemic leg also increased 2 weeks after VEGF delivery (0.39 ± 0.19 to 0.69 ± 0.28, p < 0.01); however, vascular regression was prevented by late Ang1 delivery (0.83 ± 0.20 at 8 wks, p < 0.005 vs. 2 wks and p<0.01 vs VEGF alone at 8 wks). At week 8, relative β values were greater in VEGF/Ang-1 treated compared to VEGF-alone treated animals (0.87 ± 0.33 to 0.60 ± 0.23, p < 0.05). Conclusions : Compared to delivery of VEGF alone, delivery of Ang-1 plasmid DNA at 2 wks post-VEGF gene delivery results in sustained improvement in MBF, with prevention of late vascular regression. The greater microvascular blood velocity in VEGF/Ang-1 treated muscle may signify improved vascular functionality with late Ang-1 therapy.


2018 ◽  
Vol 9 ◽  
pp. 204173141880863 ◽  
Author(s):  
Qiang Chang ◽  
Junrong Cai ◽  
Ying Wang ◽  
Ruijia Yang ◽  
Malcolm Xing ◽  
...  

Soft tissue generation, especially in large tissue, is a major challenge in reconstructive surgery to treat congenital deformities, posttraumatic repair, and cancer rehabilitation. The concern is along with the donor site morbidity, donor tissue shortage, and flap necrosis. Here, we report a dissection-free adipose tissue chamber–based novel guided adipose tissue regeneration strategy in a bioreactor of elastic gelatin cryogel and polydopamine-assisted platelet immobilization intended to improve angiogenesis and generate large adipose tissue in situ. In order to have matched tissue mechanics, we used 5% gelatin cryogel as growth substrate of bioreactor. Platelets from the platelet-rich plasma were then immobilized onto the gelatin cryogel with the aid of polydopamine to form a biomimetic bioreactor (polydopamine/gelatin cryogel/platelet). Platelets on the substrate led to a sustained high release in both platelet-derived growth factor and vascular endothelial growth factor compared with non-polydopamine-assisted group. The formed bioreactor was then transferred to a tissue engineering chamber and then inserted above inguinal fat pad of rats without flap dissection. This integrate strategy significantly boomed the vessel density, stimulated cellular proliferation, and upregulated macrophage infiltration. There was a noticeable rise in the expression of dual-angiogenic growth factors (platelet-derived growth factor and vascular endothelial growth factor) in chamber fluid; host cell migration and host fibrous protein secretion coordinated with gelatin cryogel degradation. The regenerated adipose tissue volume gained threefold larger than control group (p < 0.05) with less fibrosis tissue. These results indicate that a big well-vascularized three-dimensional mature adipose tissue can be regenerated using elastic gel, polydopamine, platelets, and small fat tissue.


2017 ◽  
Vol 8 (1) ◽  
pp. 21-25
Author(s):  
Anita Rawat ◽  
Anil Kumar Gangwar ◽  
Archana Ghildiyal ◽  
Neena Srivastava ◽  
Sunita Tiwari ◽  
...  

Background: Pre-eclampsia(PE) is  the  most  frequently encountered  medical  complication  during  pregnancy. In developing countries PE   is a principal cause of maternal mortality. A disturbance  in  the  angiogenic/antiangiogenic  factors  and  in  the  hypoxia/placental re-oxygenation  process,  seems  to  activate a maternal  endothelial  dysfunction.Aims and Objective: To estimate Vascular Endothelial Growth Factor ( VEGF )  level  in the cord blood of healthy and Preeclamptic ( PEc ) pregnant women and to associate this with Preeclamptic pregnancy.Material and Methods: A case-control study ofUmbilical cord serum VEGF levels from women with uncomplicated pregnancies (control group, n=60) and pregnancies complicated by Pre-eclampsia (n=40). VEGF in the cord serum was estimated by SANDWICH Enzyme Linked Immunosorbent Assay method by using ELISA Kit and then compared between the two groups.Results: The mean VEGF concentrations in the women who had pre-eclampsia  (578.62±468.3)  were lower than in the control group( 625.75±533.1) , but the difference was not statistically significant ( p= 0.8548).  Conclusion VEGF plays a key role in the instability between endothelial dysfunction and angiogenesis that occurs during Preeclampsia.  VEGF levels might be a useful tool for the early diagnosis of Pre-eclampsia.Asian Journal of Medical Sciences Vol.8(1) 2017 21-25


Sign in / Sign up

Export Citation Format

Share Document