scholarly journals Void-hole aware and reliable data forwarding strategy for underwater wireless sensor networks

2021 ◽  
Vol 30 (1) ◽  
pp. 564-577
Author(s):  
Omar Adil Mahdi ◽  
Ahmed Basil Ghazi ◽  
Yusor Rafid Bahar Al-Mayouf

Abstract Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data communication processes with sink node. As such, failure in communicating nodes would lead to a significant network void-holes problem. Considering the limited energy resources of nodes in UWSNs along with the heavy load of CHs in the routing process, this paper proposes a void-holes aware and reliable data forwarding strategy (VHARD-FS) in a proactive mode to control data packets delivery from CH nodes to the sink in UWSNs. In the proposed strategy, each CH node is aware of its neighbor’s performance ranking index to conduct a reliable packet transmission to the sink via the most energy-efficient route. Extensive simulation results indicate that the VHARD-FS outperforms existing routing approaches while comparing energy efficiency and network throughput. This study helps to effectively alleviate the resource limitations associated with UWSNs by extending network life and increasing service availability even in a harsh underwater environment.

Author(s):  
Mark S. Leeson ◽  
Sahil Patel

Underwater Wireless Sensor Networks (UWSNs) are used in applications such as mineral exploration and environmental monitoring, and must offer reliability and energy efficiency. These are related to each other in the sense that the former requires error-correction which in turn requires energy, consuming battery life in an environment where battery replacement and recharging are difficult. This chapter thus addresses the energy efficiency of three suitable error correction methods for UWSNs, namely Automatic Repeat Request (ARQ), Forward Error Correction (FEC) and Network Coding (NC). The performance of the schemes as a function of transmission distance is determined for various packet sizes by using models of attenuation and noise that represent the underwater environment. ARQ offers the lowest efficiency and NC the highest but there is a distance at which FEC becomes the best option rather than NC suggesting a hybrid FEC/NC method.


2017 ◽  
Vol 13 (2) ◽  
pp. 155014771769198
Author(s):  
Dongwei Li ◽  
Jingli Du ◽  
Linfeng Liu

The underwater wireless sensor networks composed of sensor nodes are deployed underwater for monitoring and gathering submarine data. Since the underwater environment is usually unpredictable, making the nodes move or be damaged easily, such that there are several vital objectives in the data forwarding issue, such as the delivery success rate, the error rate, and the energy consumption. To this end, we propose a data forwarding algorithm based on Markov thought, which logically transforms the underwater three-dimensional deployment model into a two-dimensional model, and thus the nodes are considered to be hierarchically deployed. The data delivery is then achieved through a “bottom to top” forwarding mode, where the delivery success rate is improved and the energy consumption is reduced because the established paths are more stable, and the proposed algorithm is self-adaptive to the dynamic routing loads.


Author(s):  
Ananda Kumar K S ◽  
Balakrishna R

At present day’s wireless sensor networks, obtain a lot consideration to researchers. Maximum number of sensor nodes are scattered that can communicate with all others. Reliable data communication and energy consumption are the mainly significant parameters that are required in wireless sensor networks. Many of MAC protocols have been planned to improve the efficiency more by enhancing the throughput and energy consumption. The majority of the presented medium access control protocols to only make available, reliable data delivery or energy efficiency does not offer together at the same time. In this research work the author proposes a novel approach based on Receiver Centric-MAC is implemented using NS2 simulator. Here, the author focuses on the following parametric measures like - energy consumption, reliability and bandwidth. RC-MAC provides high bandwidth without decreasing energy efficiency. The results show that 0.12% of less energy consumption, reliability improved by 20.86% and bandwidth increased by 27.32% of RC-MAC compared with MAC IEEE 802.11.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5608
Author(s):  
Quanwei Zhang ◽  
Dazhong Li ◽  
Yue Fei ◽  
Jiakang Zhang ◽  
Yu Chen ◽  
...  

Existing duty-cycling and pipelined-forwarding (DCPF) protocols applied in battery-powered wireless sensor networks can significantly alleviate the sleep latency issue and save the energy of networks. However, when a DCPF protocol applies to a linear sensor network (LSN), it lacks the ability to handle the bottleneck issue called the energy-hole problem, which is mainly manifested due to the excessive energy consumption of nodes near the sink node. Without overcoming this issue, the lifespan of the network could be greatly reduced. To that end, this paper proposes a method of deploying redundant nodes in LSN, and a corresponding enhanced DCPF protocol called redundancy-based DCPF (RDCPF) to support the new topology of LSN. In RDCPF, the distribution of energy consumption of the whole network becomes much more even. RDCPF also brings improvements to the network in terms of network survival time, packet delivery latency, and energy efficiency, which have been shown through the extensive simulations in comparison with existing DCPF protocols.


2019 ◽  
Vol 15 (6) ◽  
pp. 155014771985424 ◽  
Author(s):  
Munsif Ali ◽  
Anwar Khan ◽  
Hasan Mahmood ◽  
Naeeem Bhatti

In underwater wireless sensor networks, stability and reliability of the network are of paramount importance. Stability of the network ensures persistent operation of the network that, in consequence, avoids data loss when nodes consume all the battery power and subject to death. Particularly, nodes bearing a low pressure of water die early in the usual routing approach due to being preferred choices for data routing. Reliability ensures minimization of the adverse channel effects on data packets so that the desired information is easily extracted from these packets. This article proposes two routing protocols for underwater wireless sensor networks: reliable and stability-aware routing and cooperative reliable and stability-aware routing. In reliable and stability-aware routing, energy assignment to a node is made on the basis of its depth. Sensor nodes having the lowest depth are assigned the highest amount of energy. This energy assignment is called the energy grade of a node and five energy grades are formed in the proposed network from top to bottom. The energy grade along with energy residing in a node battery and its depth decide its selection as a forwarder node. The reliable and stability-aware routing uses only a single link to forward packets. Such a link may not be reliable always. To overcome this issue, the cooperative reliable and stability-aware routing is proposed which introduces cooperative routing to reliable and stability-aware routing. Cooperative routing involves the reception of multiple copies of data symbols by destination. This minimizes the adverse channel effects on data packets and makes the information extraction convenient and less cumbersome at the final destination. Unlike the conventional approach, the proposed schemes do not take into account the coordinates of nodes for defining the routing trajectories, which is challenging in underwater medium. Simulation results reveal a better behavior of the proposed protocols than some competitive schemes in terms of providing stability to the network, packet transfer to the ultimate destination, and latency.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 256 ◽  
Author(s):  
Haotian Chang ◽  
Jing Feng ◽  
Chaofan Duan

Data forwarding for underwater wireless sensor networks has drawn large attention in the past decade. Due to the harsh underwater environments for communication, a major challenge of Underwater Wireless Sensor Networks (UWSNs) is the timeliness. Furthermore, underwater sensor nodes are energy constrained, so network lifetime is another obstruction. Additionally, the passive mobility of underwater sensors causes dynamical topology change of underwater networks. It is significant to consider the timeliness and energy consumption of data forwarding in UWSNs, along with the passive mobility of sensor nodes. In this paper, we first formulate the problem of data forwarding, by jointly considering timeliness and energy consumption under a passive mobility model for underwater wireless sensor networks. We then propose a reinforcement learning-based method for the problem. We finally evaluate the performance of the proposed method through simulations. Simulation results demonstrate the validity of the proposed method. Our method outperforms the benchmark protocols in both timeliness and energy efficiency. More specifically, our method gains 83.35% more value of information and saves up to 75.21% energy compared with a classic lifetime-extended routing protocol (QELAR).


2017 ◽  
Vol 72 (3-4) ◽  
pp. 173-188 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Sheeraz Ahmed ◽  
Muhammad Imran ◽  
Masoom Alam ◽  
Iftikhar Azim Niaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document