Numerical Examination of Thermophysical Properties of Cobalt Ferroparticles over a Wavy Surface Saturated in Non-Darcian Porous Medium

2020 ◽  
Vol 45 (2) ◽  
pp. 109-120
Author(s):  
Irfan Mustafa ◽  
Abuzar Ghaffari ◽  
Tariq Javed ◽  
Javeria Nawaz Abbasi

AbstractIn this study, the effect of magnetic field on an incompressible ferrofluid flow along a vertical wavy surface saturated in a porous medium is investigated. Ferrofluid is made by incorporating magnetic particles, in this case cobalt, at the nanoscale level into a base fluid. For the study of porous medium two well-known models, namely, Darcy and non-Darcy, are used. The mathematical model in terms of governing partial differential equations which are based on conservation laws in mechanics according to the assumption is developed, and this model is converted into a dimensionless form by suitable transformations. Due to the complex non-linear partial differential equations, the numerical solution is calculated by using an implicit finite difference scheme. The impact of involved parameters, namely, magnetic parameter, nanoparticle volume fraction parameter, the amplitude of the wavy surface, and the Grashof number, on Nusselt and average Nusselt numbers are studied through graphs and tables.The results show that for large values of the magnetic parameter, both the Nusselt number and the average Nusselt number decrease in ferrofluid flow. The value of the Nusselt number in the Darcy model is higher than the value of the Nusselt number in the non-Darcy model.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
J. Nathan Kutz ◽  
J. L. Proctor ◽  
S. L. Brunton

We consider the application of Koopman theory to nonlinear partial differential equations and data-driven spatio-temporal systems. We demonstrate that the observables chosen for constructing the Koopman operator are critical for enabling an accurate approximation to the nonlinear dynamics. If such observables can be found, then the dynamic mode decomposition (DMD) algorithm can be enacted to compute a finite-dimensional approximation of the Koopman operator, including its eigenfunctions, eigenvalues, and Koopman modes. We demonstrate simple rules of thumb for selecting a parsimonious set of observables that can greatly improve the approximation of the Koopman operator. Further, we show that the clear goal in selecting observables is to place the DMD eigenvalues on the imaginary axis, thus giving an objective function for observable selection. Judiciously chosen observables lead to physically interpretable spatio-temporal features of the complex system under consideration and provide a connection to manifold learning methods. Our method provides a valuable intermediate, yet interpretable, approximation to the Koopman operator that lies between the DMD method and the computationally intensive extended DMD (EDMD). We demonstrate the impact of observable selection, including kernel methods, and construction of the Koopman operator on several canonical nonlinear PDEs: Burgers’ equation, the nonlinear Schrödinger equation, the cubic-quintic Ginzburg-Landau equation, and a reaction-diffusion system. These examples serve to highlight the most pressing and critical challenge of Koopman theory: a principled way to select appropriate observables.


2017 ◽  
Vol 59 (2) ◽  
pp. 167-182 ◽  
Author(s):  
H. Y. ALFIFI

Semi-analytical solutions are derived for the Brusselator system in one- and two-dimensional domains. The Galerkin method is processed to approximate the governing partial differential equations via a system of ordinary differential equations. Both steady-state concentrations and transient solutions are obtained. Semi-analytical results for the stability of the model are presented for the identified critical parameter value at which a Hopf bifurcation occurs. The impact of the diffusion coefficients on the system is also considered. The results show that diffusion acts to stabilize the systems better than the equivalent nondiffusive systems with the increasing critical value of the Hopf bifurcation. Comparison between the semi-analytical and numerical solutions shows an excellent agreement with the steady-state transient solutions and the parameter values at which the Hopf bifurcations occur. Examples of stable and unstable limit cycles are given, and Hopf bifurcation points are shown to confirm the results previously calculated in the Hopf bifurcation map. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with the numerical solutions of partial differential equations.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Maria Imtiaz ◽  
Hira Nazar ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Abstract The focus of this paper is to study the effects of stagnation point flow and porous medium on ferrofluid flow over a variable thicked sheet. Heat transfer analysis is discussed by including thermal radiation. Suitable transformations are applied to convert partial differential equations to ordinary differential equations. Convergent results for series solutions are calculated. The impact of numerous parameters on velocity and temperature is displayed for series solutions. Graphical behavior for skin friction coefficient and Nusselt number is also analyzed. Numerical values of Nusselt number are tabulated depending upon various parameters


2019 ◽  
Vol 15 (2) ◽  
pp. 317-336 ◽  
Author(s):  
Tarun Kansal

PurposeThe purpose of this paper to construct the fundamental solution of partial differential equations in the generalized theory of thermoelastic diffusion materials with double porosity.Design/methodology/approachThe paper deals with the study of pseudo oscillations in the generalized theory of thermoelastic diffusion materials with double porosity.FindingsThe paper finds the fundamental solution of partial differential equations in terms of elementary functions.Originality/valueAssuming the displacement vector, volume fraction fields, temperature change and chemical potential functions in terms of oscillation frequency in the governing equations, pseudo oscillations have been studied and finally the fundamental solution of partial differential equations in case of pseudo oscillations in terms of elementary functions has been constructed.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
B. Vasu ◽  
Ch. RamReddy ◽  
P. V. S. N. Murthy ◽  
Rama Subba Reddy Gorla

This article emphasizes the significance of entropy generation analysis and nonlinear temperature density relation on thermally stratified viscous fluid flow over a vertical plate embedded in a porous medium with a thermal dispersion effect. In addition, the convective surface boundary condition is taken into an account. By using the suitable transformations, the governing flow equations in dimensional form are converted into set of nondimensional partial differential equations. Then the local similarity and nonsimilarity procedures are applied to transform the set of nondimensional partial differential equations into set of ordinary differential equations and then the resulting system of equations are solved by Chebyshev spectral collocation method along with the successive linearization. The effect of pertinent parameters, namely, Biot number, mixed convection parameter, and thermal dispersion on velocity, temperature, entropy generation rate, and heat transfer rate are displayed graphically and the salient features are explored in detail.


Author(s):  
Sidra Shaheen ◽  
Khadija Maqbool ◽  
Farah Gul ◽  
Ayesha Sohail

To prevent the respiratory diseases in an air ways, a defense mechanism based on mucus transport by the moving cilia plays an important role. The mucus transport is affected by the thermal radiation, chemical reaction that changes the physics of fluid due to nanoparticles and thickness of mucus, also different problems in respiratory tract may occur due to the mucus efficacy. In this study, it is observed that the mucus transport can be controlled by the magnetic field that is produced by the drug delivery of nanoparticles, thermal radiation due to temperature difference, porous medium due to respiratory infection, and diffusion of the nanoparticles (chemical reaction) due to the magnetic drug delivery. In this model, flow of Jeffrey nanofluid through the ciliated tube resembles with the mucus flow in a wind pipe. The movement of the mucus is observed by the momentum, energy and concentration equation in the presence of body forces due to magnetic field, heat source due to radiation, Darcy’s resistance due to infection and chemical reaction due to the concentration of nanoparticles. Mathematical model of this study forms a complex system of partial differential equations under the low Reynolds number and long wavelength approximation. The nonlinear set of partial differential equations is solved by the Homotopy perturbation method and software “Mathematica,” results are found for velocity, temperature and concentration profiles and concluded that the mucus flow decelerates due to magnetic field produced by the drug delivery of the nanoparticles but accelerates due to the viscoelastic parameter of Jeffrey fluid and Darcy’s resistance parameter due to infection. The heat transfer rate in the mucus flow rises by increasing the random motion and reduces by the radiation and energy loss. The diffusion of the nanoparticles in the mucus rises by the growing values of thermophoresis and chemical reaction parameter and reduces by the growing values of viscoelastic and Brownian motion parameter.


2020 ◽  
Vol 12 (01) ◽  
pp. 2050003 ◽  
Author(s):  
S. Hashemi ◽  
A. A. Jafari

In this research, the nonlinear free vibrations analysis of functionally graded (FG) rectangular plate which simply supported all edges are investigated analytically using modified Lindstedt–Poincare (MLP) method for the first time. For this purpose, with the aid of von Karman nonlinearity strain-displacement relations, the partial differential equations of motion are developed based on first-order shear deformation theory (FSDT). Afterward, by applying Galerkin method, the nonlinear partial differential equations are transformed into the time-dependent nonlinear ordinary differential equations. The nonlinear equation of motion is then solved analytically by MLP method to determine the nonlinear frequencies of the FG rectangular plate. The material properties are assumed to be graded through the direction of plate thickness according to power law distribution. The effects of some system parameters such as vibration amplitude, volume fraction index and aspect ratio on the nonlinear to linear frequency ratio are discussed in detail. To validate the analysis, the results of this paper are compared with both the published data and numerical method, and good agreements are found.


Author(s):  
Fatema Tuz Zohra ◽  
Mohammed Jashim Uddin ◽  
Md Faisal Basir ◽  
Ahmad Izani Md Ismail

Microfluidic-related technologies and micro-electromechanical systems–based microfluidic devices have received applications in science and engineering fields. This article is the study of a mathematical model of steady forced convective flow past a rotating disc immersed in water-based nanofluid with microorganisms. The boundary layer flow of a viscous nanofluid is studied with multiple slip conditions and Stefan blowing effects under the magnetic field influence. The microscopic nanoparticles move randomly and have the characteristics of thermophoresis, and it is being considered that the change in volume fraction of the nanofluid does not affect the thermo-physical properties. The governing equations are nonlinear partial differential equations. At first, the nonlinear partial differential equations are converted to system of nonlinear ordinary differential equations using suitable similarity transformations and then solved numerically. The influence of relevant parameters on velocities, temperature, concentration and motile microorganism density is illustrated and explained thoroughly. This investigation indicated that suction provides a better medium to enhance the transfer rate of heat, mass and microorganisms compared to blowing. This analysis has a wide range engineering application such as electromagnetic micro pumps and nanomechanics.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Prabhugouda Mallanagouda Patil ◽  
Madhavarao Kulkarni

AbstractThe present study focuses on double diffusive nonlinear (quadratic) mixed convective flow of nanoliquid about vertical wedge with nonlinear temperature-density-concentration variations. This study is found to be innovative and comprises the impacts of quadratic mixed convection, magnetohydrodynamics, diffusion of nanoparticles and liquid hydrogen flow around a wedge. Highly coupled nonlinear partial differential equations (NPDEs) and boundary constraints have been used to model the flow problem, which are then transformed into a dimensionless set of equations utilizing non-similar transformations. Further, a set of NPDEs would be linearized with the help of Quasilinearization technique, and then, the linear partial differential equations are transformed into a block tri-diagonal system through using implicit finite difference scheme, which is solved using Verga’s algorithm. The study findings were explored through graphs for the fluid velocity, temperature, concentration, nanoparticle volume fraction distributions and its corresponding gradients. One of the important results of this study is that the higher wedge angle values upsurge the friction between the particles of the fluid and the wedge surface. Rising Schmidt number declines the concentration distribution and enhances the magnitude of Sherwood number. Nanofluid’s temperature increases with varying applied magnetic field. The present study has notable applications in the designing and manufacturing of wedge-shaped materials in space aircrafts, construction of dams, thermal systems, oil and gas industries, etc.


2015 ◽  
Vol 25 (8) ◽  
pp. 1774-1792 ◽  
Author(s):  
D. Srinivasacharya ◽  
P. Vijay Kumar

Purpose – The purpose of this paper is to study the mixed convection in a nanofluid along an inclined wavy surface embedded in a porous medium. Design/methodology/approach – The complex wavy surface is transformed to a smooth surface by employing a coordinate transformation. Using the similarity transformation, the governing equations are transformed into a set of ordinary differential equations and then lineralized using the successive linearization method. The Chebyshev pseudo spectral method is then used to solve linearized differential equations. Findings – The effects of Brownian motion parameter, thermophoresis parameter, amplitude of the wavy surface, angle of inclination of the wavy surface for aiding and opposing flows on the non-dimensional velocity, temperature, nanoparticle volume fraction, heat and nanoparticle mass transfer rates are studied and presented graphically. Originality/value – This is the first instance in which mixed convection, inclined wavy surface and nanofluid is employed to model fluid flow.


Sign in / Sign up

Export Citation Format

Share Document