New Scheduling Algorithms for Agile All-Photonic Networks

2017 ◽  
Vol 38 (4) ◽  
Author(s):  
Mohammad Saleh Mehri ◽  
Akbar Ghaffarpour Rahbar

AbstractAn optical overlaid star network is a class of agile all-photonic networks that consists of one or more core node(s) at the center of the star network and a number of edge nodes around the core node. In this architecture, a core node may use a scheduling algorithm for transmission of traffic through the network. A core node is responsible for scheduling optical packets that arrive from edge nodes and switching them toward their destinations. Nowadays, most edge nodes use virtual output queue (VOQ) architecture for buffering client packets to achieve high throughput. This paper presents two efficient scheduling algorithms called discretionary iterative matching (DIM) and adaptive DIM. These schedulers find maximum matching in a small number of iterations and provide high throughput and incur low delay. The number of arbiters in these schedulers and the number of messages exchanged between inputs and outputs of a core node are reduced. We show that DIM and adaptive DIM can provide better performance in comparison with iterative round-robin matching with SLIP (iSLIP). SLIP means the act of sliding for a short distance to select one of the requested connections based on the scheduling algorithm.

Author(s):  
Satyasrikanth Palle ◽  
Shivashankar

Objective: The demand for Cellular based multimedia services is growing day by day, in order to fulfill such demand the present day cellular networks needs to be upgraded to support excessive capacity calls along with high data accessibility. Analysis of traffic and huge network size could become very challenging issue for the network operators for scheduling the available bandwidth between different users. In the proposed work a novel QoS Aware Multi Path scheduling algorithm for smooth CAC in wireless mobile networks. The performance of the proposed algorithm is assessed and compared with existing scheduling algorithms. The simulation results show that the proposed algorithm outperforms existing CAC algorithms in terms of throughput and delay. The CAC algorithm with scheduling increases end-to-end throughput and decreases end-to-end delay. Methods: The key idea to implement the proposed research work is to adopt spatial reuse concept of wireless sensor networks to mobile cellular networks. Spatial reusability enhances channel reuse when the node pairs are far away and distant. When Src and node b are communicating with each other, the other nodes in the discovered path should be idle without utilizing the channel. Instead the other nodes are able to communicate parallelly the end-to-end throughput can be improved with acceptable delay. Incorporating link scheduling algorithms to this key concept further enhances the end-to-end throughput with in the turnaround time. So, in this research work we have applied spatial reuse concept along with link scheduling algorithm to enhance end-to-end throughput with in turnaround time. The proposed algorithm not only ensures that a connection gets the required bandwidth at each mobile node on its way by scheduling required slots to meet the QoS requirements. By considering the bandwidth requirement of the mobile connections, the CAC module at the BS not only considers the bandwidth requirement but also conforming the constrains of system dealy and jitter are met. Result: To verify the feasibility and effectiveness of our proposed work, with respect to scheduling the simulation results clearly shows the throughput improvement with Call Admission Control. The number of dropped calls is significantly less and successful calls are more with CAC. The percentage of dropped calls is reduced by 9 % and successful calls are improved by 91%. The simulation is also conducted on time constraint and ratio of dropped calls are shown. The total time taken to forward the packets and the ration of dropped calls is less when compared to non CAC. On a whole the CAC with scheduling algorithms out performs existing scheduling algorithms. Conclusion: In this research work we have proposed a novel QoS aware scheduling algorithm that provides QoS in Wireless Cellular Networks using Call Admission Control (CAC). The simulation results show that the end-to-end throughput has been increased by 91% when CAC is used. The proposed algorithm is also compared with existing link scheduling algorithms. The results reveal that CAC with scheduling algorithm can be used in Mobile Cellular Networks in order to reduce packet drop ratio. The algorithm is also used to send the packets within acceptable delay.


2014 ◽  
Vol 519-520 ◽  
pp. 108-113 ◽  
Author(s):  
Jun Chen ◽  
Bo Li ◽  
Er Fei Wang

This paper studies resource reservation mechanisms in the strict parallel computing grid,and proposed to support the parallel strict resource reservation request scheduling model and algorithms, FCFS and EASY backfill analysis of two important parallel scheduling algorithm, given four parallel scheduling algorithms supporting resource reservation. Simulation results of four algorithms of resource utilization, job bounded slowdown factor and the success rate of Advanced Reservation (AR) jobs were studied. The results show that the EASY backfill + firstfit algorithm can ensure QoS of AR jobs while taking into account the performance of good non-AR jobs.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1320
Author(s):  
Vijay Prakash ◽  
Seema Bawa ◽  
Lalit Garg

Workflow scheduling is one of the significant issues for scientific applications among virtual machine migration, database management, security, performance, fault tolerance, server consolidation, etc. In this paper, existing time-based scheduling algorithms, such as first come first serve (FCFS), min–min, max–min, and minimum completion time (MCT), along with dependency-based scheduling algorithm MaxChild have been considered. These time-based scheduling algorithms only compare the burst time of tasks. Based on the burst time, these schedulers, schedule the sub-tasks of the application on suitable virtual machines according to the scheduling criteria. During this process, not much attention was given to the proper utilization of the resources. A novel dependency and time-based scheduling algorithm is proposed that considers the parent to child (P2C) node dependencies, child to parent node dependencies, and the time of different tasks in the workflows. The proposed P2C algorithm emphasizes proper utilization of the resources and overcomes the limitations of these time-based schedulers. The scientific applications, such as CyberShake, Montage, Epigenomics, Inspiral, and SIPHT, are represented in terms of the workflow. The tasks can be represented as the nodes, and relationships between the tasks can be represented as the dependencies in the workflows. All the results have been validated by using the simulation-based environment created with the help of the WorkflowSim simulator for the cloud environment. It has been observed that the proposed approach outperforms the mentioned time and dependency-based scheduling algorithms in terms of the total execution time by efficiently utilizing the resources.


Author(s):  
Muhammad Aliyu ◽  
Murali M. ◽  
Abdulsalam Y. Gital ◽  
Souley Boukari ◽  
Rumana Kabir ◽  
...  

As cloud resource demand grows, supply chain management (SCM), which is the core function of cloud computing, faces serious challenges. Quite a number of techniques have been proposed by many researchers for such a challenge. As such, numerous proposed strategies are still under reckoning and modification so as to enhance its potential. An optimized dynamic scheme that combined several algorithms' characteristics was proposed to map out such a challenge. The hybridized proposed scheme involved the meta-heuristic swarm mechanism of ant colony optimization (ACO) and deterministic spanning tree (SPT) algorithm as it obtained faster convergence chain, ensured resource utilization in least time and cost. Extensive experiments conducted in cloudsim simulator provided an efficient result in terms of minimized makespan time and throughput as compared to SPT, round robin (RR), and pre-emptive fair scheduling algorithm (PFSA) as it significantly improves performance.


2010 ◽  
Vol 2 (1) ◽  
pp. 34-50 ◽  
Author(s):  
Nikolaos Preve

Job scheduling in grid computing is a very important problem. To utilize grids efficiently, we need a good job scheduling algorithm to assign jobs to resources in grids. The main scope of this article is to propose a new Ant Colony Optimization (ACO) algorithm for balanced job scheduling in the Grid environment. To achieve the above goal, we will indicate a way to balance the entire system load while minimizing the makespan of a given set of jobs. Based on the experimental results, the proposed algorithm confidently demonstrates its practicability and competitiveness compared with other job scheduling algorithms.


2018 ◽  
Vol 246 ◽  
pp. 03005
Author(s):  
Fu Xiao ◽  
Li-ming Xiao

This paper proposes a hardware platform for WCDMA baseband data transmission, which consists of USB3.0 interface, general purposes processor (GPP), and software defined radio (SDR) system. In view of the requirements of WCDMA system, the hardware platform consisting of USB3.0 controller, FPGA and DDRII was selected, which finally realized the high throughput rate and low delay transmission of baseband data of WCDMA system. The experimental results show that in this GPP software defined radio system, the interface speed of USB3.0 can reach 200MBps, and the loopback delay time of the system is about 0.7ms, which can meet the requirements of WCDMA system.


2012 ◽  
Vol 433-440 ◽  
pp. 3553-3559 ◽  
Author(s):  
Qing Quan Cui ◽  
Ya Hui Wang ◽  
Dong Wei ◽  
Shao Jun Zhang

Networked Control System is the focus of current research in control field, and the use of a shared network introduces new challenges, therefore, it is significant to research scheduling algorithms for improving the control and schedule performance of NCS. In the paper, according to the challenges existing in scheduling algorithms, a new scheduling algorithm called Switch scheduling is proposed, and the calculation method of switching conditions is also given. In the proposed algorithm, network-induced delay and network utilization are considered to satisfy the different network condition with appropriate scheduling algorithm. The proposed algorithm improves the network utilization and the efficiency of data transmission, and guarantees the system stability. Finally, a simulation example is conducted to validate the feasibility and superiority of the proposed switch scheduling.


Sign in / Sign up

Export Citation Format

Share Document