Diagnostic values of proenkephalin and S100B protein in traumatic brain injury

2017 ◽  
Vol 41 (3) ◽  
Author(s):  
Anil Yalcin ◽  
Ahmet Baydin ◽  
Özgür Korhan Tuncel ◽  
Ali Kemal Erenler ◽  
Cengiz Çokluk ◽  
...  

AbstractBackground:The primary aim of this study was to investigate the diagnostic values of serum S100 calcium-binding protein B (S100B) and proenkephalin (P-ENK) levels in brain damage caused by traumatic brain injury (TBI).Methods:We prospectively collected serum blood samples of 58 adult patients admitted to our emergency department due to TBI. Serum S100B and P-ENK levels were measured and compared according to clinical findings and outcomes of the patients.Results:When patients with brain injury were compared to controls, statistical significance was determined in both S100B and P-ENK levels. According to the receiver operating characteristic (ROC) analysis, cut-off values for serum S100B and P-ENK levels for the differential diagnosis of patients with and without brain damage were found to be 785.944 ng/mL and 2.445 ng/mL, respectively. There was a statistical significance in both S100B and P-ENK levels when patients who were discharged and those who died were compared.Conclusions:Serum S100B and P-ENK levels are found to be elevated in patients with TBI when compared to controls. Additionally, serum levels of both markers are found to be elevated in patients with multiple lesions when compared to patients with a single lesion. Serum S100B and P-ENK levels may also be used as predictors of mortality in patients with TBI.

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Carlos Alberto Gonçalves ◽  
Marina Concli Leite ◽  
Maria Cristina Guerra

Adipocytes contain high levels of S100B and in vitro assays indicate a modulated secretion of this protein by hormones that regulate lipolysis, such as glucagon, adrenaline, and insulin. A connection between lipolysis and S100B release has been proposed but definitive evidence is lacking. Although the biological significance of extracellular S100B from adipose tissue is still unclear, it is likely that this tissue might be an important source of serum S100B in situations related, or not, to brain damage. Current knowledge does not preclude the use of this protein in serum as a marker of brain injury or astroglial activation, but caution is recommended when discussing the significance of changes in serum levels where S100B may function as an adipokine, a neurotrophic cytokine, or an alarmin.


2014 ◽  
Vol 121 (5) ◽  
pp. 1232-1238 ◽  
Author(s):  
Joshua W. Gatson ◽  
Jennifer Barillas ◽  
Linda S. Hynan ◽  
Ramon Diaz-Arrastia ◽  
Steven E. Wolf ◽  
...  

Object In previous studies of traumatic brain injury (TBI), neural biomarkers of injury correlate with injury severity and predict neurological outcome. The object of this paper was to characterize neurofilament-H (NFL-H) as a predictor of injury severity in patients who have suffered mild TBI (mTBI). Thus, the authors hypothesized that phosphorylated NFL-H (pNFL-H) levels are higher in mTBI patients than in healthy controls and identify which subjects experienced a more severe injury such as skull fractures, intracranial hemorrhaging, and/or contusions as detected by CT scans. Methods In this prospective clinical study, blood (8 ml) was collected from subjects (n = 34) suffering from mTBI (as defined by the American Congress of Rehabilitation and Glasgow Coma Scale scores between 13 and 15) at Parkland Hospital, Dallas, Texas, on Days 1 and 3 after injury). Additional clinical findings from the CT scans were also used to categorize the TBI patients into those with and those without clinical findings on the scans (CT+ and CTgroups, respectively). The serum levels of pNFL-H were measured using the enzyme-linked immunosorbent assay. Results Compared with healthy controls, the mTBI patients exhibited a significant increase in the serum levels of pNFL-H on Days 1 (p = 0.00001) and 3 (p = 0.0001) after TBI. An inverse correlation was observed between pNFL-H serum levels and Glasgow Coma Scale scores, which was significant. Additionally, using receiver operating characteristic curve analysis to compare the mTBI cases with controls to determine sensitivity and specificity, an area under the curve of 100% was achieved for both (p = 0.0001 for both). pNFL-H serum levels were only significantly higher on Day 1 in mTBI patients in the CT+ group (p < 0.008) compared with the CT− group. The area under the curve (82.5%) for the CT+ group versus the CT− group was significant (p = 0.021) with a sensitivity of 87.5% and a specificity of 70%, using a cutoff of 1071 pg/ml of pNFL-H in serum. Conclusions This study describes the serum profile of pNFL-H in patients suffering from mTBI with and without CT findings on Days 1 and 3 after injury. These results suggest that detection of pNFL-H may be useful in determining which individuals require CT imaging to assess the severity of their injury.


2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Mohammed F.A Ali ◽  
Ahmed M.F Ghoul ◽  
Mohamed I Refaat

Abstract Background Cognitive impairment after traumatic brain injury (TBI) is a main source of morbidity for affected individuals, their family members, and their community. There are numerous serum biomarkers, which are elevated after TBI; one of these is D-dimer. Several studies have related that trauma-related coagulopathy, marked by elevated D-dimer levels, is associated with poor prognosis. Objective The aim of this study was to find if there is a correlation between elevated serum levels of D-dimer and impairment of final cognitive outcome in case suffering of Moderate TBI. Patients and method This is a prospective cohort study with a random sample of 87 patients suffering from moderate TBI. Serum level of D-dimer was requested for all cases after confirming the diagnosis of moderate TBI with post-traumatic GCS 9–12. Head trauma treatment protocols were followed according to each case diagnosis and then at the time of discharge cognitive outcome was assessed for all cases. Neurocognition was assessed by Montreal cognitive assessment-Basic (MoCA-B). Results Eighty-seven cases were included in this trial with a mean age 28 years. 48.3% of cases were treated conservatively while the remaining 51.7% needed surgical interventions for different pathologies. Seventy-five cases had elevated levels of serum D-dimer (86.2%) whereas only 12 cases have within normal levels (13.8%). A twofold increase in the serum D-dimer level was found in 41% of cases, while 34.5% of cases had three- to sixfold increases, and 10% of cases had more than sixfold increase. The mean MoCA-B score was 24 points (range 13–27). Correlating the D-dimer levels statistically with the MoCA scores, age, admission and discharge GCS, and durations of hospital stay did not show any statistical significance with any of these variables. Conclusion The role played by D-dimer in the pathophysiology of cognitive deficits and its correlation with post moderate TBI cognitive outcome was not proven.


2014 ◽  
pp. 83-89
Author(s):  
Dung Ngo ◽  
Thi Nhan Nguyen ◽  
Khanh Hoang

Objective: Study on 106 patients with closed head injury, assessment of serum ADH concentration, correlation with Glasgow score, sodium and plasma osmotic pressure. Patients and methods: Patients with closed head injuries were diagnosed determined by computerized tomography, admitted to the Hue Central Hospital 72 hours ago. Results: (i) Serum concentration of ADH 42.21 ± 47.80 pg/ml. (ii) There is a negative correlation between serum levels of ADH with: (1) Glasgow point r = -0.323, p <0.01; (2) Plasma sodium concentration r = - 0.211, p > 0.05; (3) Plasma osmotic pressure r = - 0.218, p> 0.05. Conclusion: There is a negative correlation between serum levels of ADH with Glasgow scale, plasma sodium concentration and osmotic pressure in plasma. Key words: ADH traumatic brain injury.


Author(s):  
Gopal Krishna ◽  
Varun Aggarwal ◽  
Ishwar Singh

Abstract Introduction Traumatic brain injury (TBI) affects the coagulation pathway in a distinct way than does extracranial trauma. The extent of coagulation abnormalities varies from bleeding diathesis to disseminated thrombosis. Design Prospective study. Methods The study included 50 patients of isolated TBI with cohorts of moderate (MHI) and severe head injury (SHI). Coagulopathy was graded according to the values of parameters in single laboratory. The incidence of coagulopathy according to the severity of TBI and correlation with disseminated intravascular coagulation (DIC) score, platelets, prothrombin time (PT), activated partial thromboplastin time (APTT), D-dimer, and fibrinogen was observed. The comparison was also made between expired and discharged patients within each group. It also compared coagulation derailments with clinical presentation (Glasgow Coma Scale [GCS]) and outcome (Glasgow Outcome Scale [GOS]). Results Road traffic accident was the primary (72%) mode of injury. Fifty-two percent had MHI and rest had SHI. Eighty-four percent of cases were managed conservatively. The mean GCS was 12.23 and 5.75 in MHI and SHI, respectively. Sixty-two percent of MHI and 96% of the patients with SHI had coagulation abnormalities. On statistical analysis, DIC score (p < 0.001) strongly correlated with the severity of head injury and GOS. PT and APTT were also significantly associated with the severity of TBI. In patients with moderate TBI, D-dimer and platelet counts showed association with clinical outcome. Fibrinogen levels did not show any statistical significance. The mean platelet counts remained normal in both the groups of TBI. The mean GOS was 1.54 and 4.62 in SHI and MHI, respectively. Conclusion Coagulopathy is common in isolated TBI. The basic laboratory parameters are reliable predictors of coagulation abnormalities in TBI. Coagulopathy is directly associated with the severity of TBI, GCS, and poor outcome.


2012 ◽  
Vol 58 (7) ◽  
pp. 1116-1122 ◽  
Author(s):  
Damien Bouvier ◽  
Mathilde Fournier ◽  
Jean-Benoît Dauphin ◽  
Flore Amat ◽  
Sylvie Ughetto ◽  
...  

Abstract BACKGROUND The place of serum S100B measurement in mild traumatic brain injury (mTBI) management is still controversial. Our prospective study aimed to evaluate its utility in the largest child cohort described to date. METHODS Children younger than 16 years presenting at a pediatric emergency department within 3 h after TBI were enrolled prospectively for blood sampling to determine serum S100B concentrations. The following information was collected: TBI severity determined by using the Masters classification [1: minimal or Glasgow Coma Scale (GCS) 15, 2: mild or GCS 13–15, and 3: severe or GCS &lt;13]; whether hospitalized or not; good or bad clinical evolution (CE); whether cranial computed tomography (CCT) was prescribed; and related presence (CCT+) or absence (CCT−) of lesions. RESULTS For the 446 children enrolled, the median concentrations of S100B were 0.21, 0.31, and 0.44 μg/L in Masters groups 1, 2, and 3, respectively, with a statistically significant difference between these groups (P &lt; 0.05). In Masters group 2, 65 CCT scans were carried out. Measurement of S100B identified patients as CCT+ with 100% (95% CI 85–100) sensitivity and 33% (95% CI 20–50) specificity. Of the 424 children scored Masters 1 or 2, 21 presented “bad CE.” S100B identified bad CE patients with 100% (95% CI 84–100) sensitivity and 36% (95% CI 31–41) specificity. Of the 242 children hospitalized, 81 presented an S100B concentration within the reference interval. CONCLUSIONS Serum S100B determination during the first 3 h of management of children with mTBI has the potential to reduce the number of CCT scans, thereby avoiding unnecessary irradiation, and to save hospitalization costs.


2012 ◽  
Vol 33 (2) ◽  
pp. 311-318 ◽  
Author(s):  
Nicole A Terpolilli ◽  
Seong-Woong Kim ◽  
Serge C Thal ◽  
Wolfgang M Kuebler ◽  
Nikolaus Plesnila

Ischemia, especially pericontusional ischemia, is one of the leading causes of secondary brain damage after traumatic brain injury (TBI). So far efforts to improve cerebral blood flow (CBF) after TBI were not successful because of various reasons. We previously showed that nitric oxide (NO) applied by inhalation after experimental ischemic stroke is transported to the brain and induces vasodilatation in hypoxic brain regions, thus improving regional ischemia, thereby improving brain damage and neurological outcome. As regional ischemia in the traumatic penumbra is a key mechanism determining secondary posttraumatic brain damage, the aim of the current study was to evaluate the effect of NO inhalation after experimental TBI. NO inhalation significantly improved CBF and reduced intracranial pressure after TBI in male C57 Bl/6 mice. Long-term application (24 hours NO inhalation) resulted in reduced lesion volume, reduced brain edema formation and less blood–brain barrier disruption, as well as improved neurological function. No adverse effects, e.g., on cerebral auto-regulation, systemic blood pressure, or oxidative damage were observed. NO inhalation might therefore be a safe and effective treatment option for TBI patients.


2021 ◽  
Vol 19 ◽  
Author(s):  
Denise Battaglini ◽  
Dorota Siwicka-Gieroba ◽  
Patricia RM Rocco ◽  
Fernanda Ferreira Cruz ◽  
Pedro Leme Silva ◽  
...  

: Traumatic brain injury (TBI) is a major cause of disability and death worldwide. The initial mechanical insult results in tissue and vascular disruption with hemorrhages and cellular necrosis that is followed by a dynamic secondary brain damage that presumably results in additional destruction of the brain. In order to minimize deleterious consequences of the secondary brain damage-such as inflammation, bleeding or reduced oxygen supply. The old concept of the -staircase approach- has been updated in recent years by most guidelines and should be followed as it is considered the only validated approach for the treatment of TBI. Besides, a variety of novel therapies have been proposed as neuroprotectants. The molecular mechanisms of each drug involved in inhibition of secondary brain injury can result as potential target for the early and late treatment of TBI. However, no specific recommendation is available on their use in clinical setting. The administration of both synthetic and natural compounds, which act on specific pathways involved in the destructive processes after TBI, even if usually employed for the treatment of other diseases, can show potential benefits. This review represents a massive effort towards current and novel therapies for TBI that have been investigated in both pre-clinical and clinical settings. This review aims to summarize the advancement in therapeutic strategies basing on specific and distinct -target of therapies-: brain edema, ICP control, neuronal activity and plasticity, anti-inflammatory and immunomodulatory effects, cerebral autoregulation, antioxidant properties, and future perspectives with the adoption of mesenchymal stromal cells.


2021 ◽  
Vol 16 ◽  
pp. 117727192110534
Author(s):  
Ker Rui Wong ◽  
William T O’Brien ◽  
Mujun Sun ◽  
Glenn Yamakawa ◽  
Terence J O’Brien ◽  
...  

Introduction: Serum neurofilament light (NfL) is an emerging biomarker of traumatic brain injury (TBI). However, the effect of peripheral injuries such as long bone fracture and skeletal muscle injury on serum NfL levels is unknown. Therefore, the aim of this study was to determine whether serum NfL levels can be used as a biomarker of TBI in the presence of concomitant peripheral injuries. Methods: Rats were randomly assigned to one of four injury groups: polytrauma (muscle crush + fracture + TBI; n = 11); peripheral injuries (muscle crush + fracture + sham-TBI; n = 12); TBI-only (sham-muscle crush + sham-fracture + TBI; n = 13); and triple-sham (n = 7). At 2-days post-injury, serum levels of NfL were quantified using a Simoa HD-X Analyzer. Results: Compared to triple-sham rats, serum NfL concentrations were higher in rats with peripheral injuries-only, TBI-only, and polytrauma. When compared to peripheral injury-only rats, serum NfL levels were higher in TBI-only and polytrauma rats. No differences were found between TBI-only and polytrauma rats. Conclusion: Serum NfL levels did not differ between TBI-only and polytrauma rats, indicating that significant peripheral injuries did not affect the sensitivity and specificity of serum NfL as a biomarker of moderate TBI. However, the finding of elevated serum NfL levels in rats with peripheral injuries in the absence of a TBI suggests that the presence of such injuries may limit the utility of NfL as a biomarker of less severe TBI (eg, concussion).


Sign in / Sign up

Export Citation Format

Share Document