scholarly journals Using Probe Vehicle Data for Automatic Extraction of Road Traffic Parameters

2016 ◽  
Vol 12 (4) ◽  
pp. 36-45
Author(s):  
Maria Alexandra Roman Popescu

Abstract Through this paper the author aims to study and find solutions for automatic detection of traffic light position and for automatic calculation of the waiting time at traffic light. The first objective serves mainly the road transportation field, mainly because it removes the need for collaboration with local authorities to establish a national network of traffic lights. The second objective is important not only for companies which are providing navigation solutions, but especially for authorities, institutions, companies operating in road traffic management systems. Real-time dynamic determination of traffic queue length and of waiting time at traffic lights allow the creation of dynamic systems, intelligent and flexible, adapted to actual traffic conditions, and not to generic, theoretical models. Thus, cities can approach the Smart City concept by boosting, efficienting and greening the road transport, promoted in Europe through the Horizon 2020, Smart Cities, Urban Mobility initiative.

2021 ◽  
Vol 116 (1) ◽  
pp. 299-304
Author(s):  
Assel Aliyadynovna Sailau

The number of vehicles on the roads of Almaty, Kazakhstan is growing from year to year. This brings about an increasing intensity and density of traffic flows in the streets which leads to congestion, decreasing speed of the traffic flow, increasing environmental pollution caused by car emissions, and which can potentially lead to the road traffic accidents (RTA), including fatalities. While the number of injuries grows up mainly due to drivers’ non-compliance with the speed limit, the environmental pollution is caused by longer traffic jams. Therefore, to reduce the level of road traffic injuries and emissions into the environment it is necessary to ensure the uniform movement of traffic flows in cities. Currently, one of the effective ways to do it is the use of transport telematics systems, in particular, control systems for road signs, road boards and traffic lights. The paper presents an analysis of existing systems and methods of traffic light regulation. The  analyses of the systems and methods are based on the use of homogeneous data, that is the data on standard parameters of traffic flows. The need in collecting and analyzing additional semi-structured data on the factors that have a significant impact on the traffic flows parameters in cities is shown as well. The work is dedicated to solving the problem of analysis and forecast of traffic flows in the city of Almaty, Kazakhstan. GPS data on the location of individual vehicles is used as the initial data for solving this problem. By projecting the obtained information onto the graph of the city's transport network, as well as using additional filtering, it is possible to obtain an estimate of individual parameters of traffic flows. These parameters are used for short-term forecast of the changes in the city's transport network.


Author(s):  
Nouha Rida ◽  
Mohammed Ouadoud ◽  
Aberrahim Hasbi

In this paper, we present a new scheme to intelligently control the cycles and phases of traffic lights by exploiting the road traffic data collected by a wireless sensor network installed on the road. The traffic light controller determines the next phase of traffic lights by applying the Ant Colony Optimazation metaheuristics to the information collected by WSN. The objective of this system is to find an optimal solution that gives the best possible results in terms of reducing the waiting time of vehicles and maximizing the flow crossing the intersection during the green light. The results of simulations by the SUMO traffic simulator confirm the preference of the developed algorithm over the predefined time controller and other dynamic controllers.


2022 ◽  
Vol 960 (1) ◽  
pp. 012020
Author(s):  
A Boroiu ◽  
E Neagu ◽  
A A Boroiu

Abstract The paper aims to explore the possibilities of improving road traffic in the central area of cities characterized by a longitudinal arrangement of the street network, with application for the case of Pitesti, where the road network in the central area consists of two main roads arranged longitudinally, having one-way regulated traffic, interconnected by several streets. A special traffic problem is reported in the city center: on the main road connecting the two boulevards, the vehicle storage space is insufficient - because the distance between the two road intersections is too small and there is no correlation between the Green phases of traffic lights in the two intersections. The research, based on traffic measurements performed with DataFromSky software and micro-simulation traffic analyses performed with Vissim PTV software, indicated that the best solution is the partial or total correlation of the green time from the traffic light intersections that delimit the connecting road artery. As, almost exclusively, the works dedicated to the correlation of green light of traffic lights treat the problem only along the road arteries, this paper raises a special issue and reveals the possibility of simple solutions, by correlating the traffic lights at the intersections connecting the main arteries.


Author(s):  
Mustapha Kabrane ◽  
Salah-ddine Krit ◽  
Lahoucine El Maimouni

In large cities, the increasing number of vehicles private, society, merchandise, and public transport, has led to traffic congestion. Users spend much of their time in endless traffic congestion. To solve this problem, several solutions can be envisaged. The interest is focused on the  system of road signs: The use of a road infrastructure is controlled by a traffic light controller, so it is a matter of knowing how to make the best use of the controls of this system (traffic lights) so as to make traffic more fluid. The values of the commands computed by the controller are determined by an algorithm which is ultimately, only solves a mathematical model representing the problem to be solved. The objective is to make a study and then the comparison on the optimization techniques based on artificial intelligence1 to intelligently route vehicle traffic. These techniques make it possible to minimize a certain function expressing the congestion of the road network. It can be a function, the length of the queue at intersections, the average waiting time, also the total number of vehicles waiting at the intersection


2021 ◽  
Vol 27 (10) ◽  
pp. 1026-1045
Author(s):  
Abdelouafi Ikidid ◽  
Abdelaziz El Fazziki ◽  
Mohammed Sadgal

Artificial technologies are rapidly becoming one of the most powerful and popular technologies for solving complicated problems involving distributed systems. Nevertheless, their potential for application to advanced artificial transportation systems has not been sufficiently explored. This paper presents a traffic optimization system based on agent technology and fuzzy logic that aims to manage road traffic, prioritize emergency vehicles, and promote collective modes of transport in smart cities. This approach aims to optimize traffic light control at a signalized intersection by acting on the length and order of traffic light phases in order to favor priority flows and fluidize traffic at an isolated intersection and for the whole multi-intersection network, through both inter- and intra-intersection collaboration and coordination. Regulation and prioritization decisions are made on real-time monitoring through cooperation, communication, and coordination between decentralized agents. The performance of the proposed system is investigated by implementing it in the AnyLogic simulator, using a section of the road network that contains priority links. The results indicate that our system can significantly increase the efficiency of the traffic regulation system.


2019 ◽  
Vol 2 (1) ◽  
pp. 34-40
Author(s):  
Pauzun Pauzun

Traffic light is a beacon used to arrange the traffic regularity of 4- way intersection by giving the road users some opportunities to take turn alternately. The density of vehicles in each 4-way intersection has difference level while the recent traffic lights uses the same waiting time at each intersection. It makes less effective. Ideally, the traffic lights as possible should be controlled easily and utilized efficiently to facilitate the flow of traffic at 4-way intersection. Solving the problem, the solution of traffic light optimization  was provided in the form of a prototype by using the ATMEGA8535 microcontroller with two infrared laser modules and two photodiodes as a detection of the received reflection light in each intersection recently. These sensors served to determine the range of congestion levels based on the density of the vehicle. It made  the waiting time be more efficient. The tools of setting programed by using Visual Basic. The results of this study were the optimizing traffic light that makes the waiting time at each intersection becomes more effective based on the density of the vehicle.


2021 ◽  
Vol 14 (1) ◽  
pp. 432
Author(s):  
Agata Kurek ◽  
Elżbieta Macioszek

The goal of smart cities and sustainable transport is to ensure the efficient movement of people while minimizing a negative impact on the environment. Many cities around the world conduct a policy aimed at limiting parking spaces; however, the complete elimination of parking spaces in cities currently does not seem possible. Parking vehicles cause disturbances in road traffic by searching for a parking space and performing the parking maneuver. This article analyzes the impact of the parking maneuver on the capacity of the inlets of intersections with traffic lights, and the significance of the time it takes to enter and exit a parking space on road traffic disturbance areas under Polish conditions. The research is carried out in on-street parking, characterized by different positions of the parking space to the road, the different surfaces of parking spaces, and the geometry of the road next to which the parking spaces are located. Differences in the time of entry to and exit from the parking space between the research areas indicate that different characteristics of the parking spaces affect the time of the parking maneuver. Drivers wait for the acceptable distance between vehicles on the road into which the vehicle can exit from the parking space. Drivers exiting from perpendicular parking spaces more often cause traffic disruptions than in the case of parallel parking spaces, due to limited visibility. The occupancy of parking spaces directly next to the analyzed ones also affects the time of entry to and exit from the parking space. However, between the time of entry to or exit from the parking space, and the use of the parking space, there is no relationship. This finding indicates that more factors determine the time of entry to and exit from the parking space. The results presented in the article show the need to conduct further research on the impact of parking maneuvers on the capacity of intersections with traffic lights for road traffic conditions in Poland. The results of the research will allow for the design and construction of an optimal parking infrastructure that will meet the needs of road users, while minimizing the negative impact on road conditions and the natural environment following sustainable development.


Author(s):  
Norlezah Hashim ◽  
Fakrulradzi Idris ◽  
Ahmad Fauzan Kadmin ◽  
Siti Suhaila Jaapar Sidek

Traffic lights play such important role in traffic management to control the traffic on the road. Situation at traffic light area is getting worse especially in the event of emergency cases. During traffic congestion, it is difficult for emergency vehicle to cross the road which involves many junctions. This situation leads to unsafe conditions which may cause accident. An Automatic Traffic Light Controller for Emergency Vehicle is designed and developed to help emergency vehicle crossing the road at traffic light junction during emergency situation. This project used Peripheral Interface Controller (PIC) to program a priority-based traffic light controller for emergency vehicle. During emergency cases, emergency vehicle like ambulance can trigger the traffic light signal to change from red to green in order to make clearance for its path automatically. Using Radio Frequency (RF) the traffic light operation will turn back to normal when the ambulance finishes crossing the road. Result showed the design is capable to response within the range of 55 meters. This project was successfully designed, implemented and tested.


2020 ◽  
Vol 4 (01) ◽  
pp. 56-65
Author(s):  
Hayati Mukti Asih

Yogyakarta has increasing trends in the number of vehicles and consequently intensifying the traffic volume and will effect to higher emission and air pollution. Traffic lights duration plays a vital role in congestion mitigation in the critical intersections of urban areas. This study has objective to minimize the number of vehicles waiting in line by developing the hybrid simulation method. First of all, the MKJI and Webster method were calculated to determine the green traffic light. Then, the simulation model was developed to evaluate the number of vehicles waiting in line according to different duration of green traffic lights from MKJI and Webster method. A case study will then be provided in Pelemgurih intersection located in Yogyakarta, Indonesia for demonstrating the applicability of the developed method. The result shows that the duration of green traffic lights calculated by Webster method provides lower number of vehicles waiting in line. It is due to the short duration of green traffic light resulted by Webster method so that the traffic light cycle becomes shorter and it effects the number of vehicles waiting in line which is lower than MKJI method. The results obtained can help the generating desired decision alternatives that will important for Department of Transportation, Indonesia to enhance the road traffic management with low number of vehicles waiting in line.


The driver of an automobile is the key part of the “driver–car–road–environment” system, the stable functioning of which determines the efficiency and safety of road traffic. The driver as the operator of the “driver –car–road–environment” system receives most of the information from the road, data from moving and standing objects, road signs, traffic lights, surface conditions and traffic conditions. An analysis of most traffic accidents shows that the weakest part of the “driver–car–road–environment" system, restricting its effectiveness and dependability, is the person. To ensure the necessary dependability and safety, the driver of any vehicle must be careful. This is supported by an appropriate psychophysiological state, which, in turn, depends on many factors. The article presents an analysis of research work taking into account the influence of various factors on the dependability of a vehicle driver. Means and methods of research are described. Recommendations are given on creating a stand for studying the influence of the psychophysiological state of the driver on road safety. Keywords Driver dependability; road traffic; automobile; traffic environment; road accidents; road safety


Sign in / Sign up

Export Citation Format

Share Document