Smart Cities: Study and Comparison of Traffic Light Optimization in Modern Urban Areas Using Artificial Intelligence

Author(s):  
Mustapha Kabrane ◽  
Salah-ddine Krit ◽  
Lahoucine El Maimouni

In large cities, the increasing number of vehicles private, society, merchandise, and public transport, has led to traffic congestion. Users spend much of their time in endless traffic congestion. To solve this problem, several solutions can be envisaged. The interest is focused on the  system of road signs: The use of a road infrastructure is controlled by a traffic light controller, so it is a matter of knowing how to make the best use of the controls of this system (traffic lights) so as to make traffic more fluid. The values of the commands computed by the controller are determined by an algorithm which is ultimately, only solves a mathematical model representing the problem to be solved. The objective is to make a study and then the comparison on the optimization techniques based on artificial intelligence1 to intelligently route vehicle traffic. These techniques make it possible to minimize a certain function expressing the congestion of the road network. It can be a function, the length of the queue at intersections, the average waiting time, also the total number of vehicles waiting at the intersection

Traffic congestion is a serious problem on every roadway and streets in many cities around the world. This systematic review is devoted to analyze research papers that deal with the optimization of traffic signal timing. The main objective of such optimization is maximizing the number of the vehicles leaving the network in a given period of time. This will lead to enhancing the performance of the road system. In this work, we researched the most recent metaheuristic optimized traffic light control techniques. It was shown that integrating optimization techniques in the field of traffic lights control had a great impact on the performance of traffic monitoring. During our research, we found that the most used method was the Genetic Algorithm (GA).


2021 ◽  
Vol 13 (1) ◽  
pp. 45-57
Author(s):  
Attila M. Nagy ◽  
Vilmos Simon

Managing the frequent traffic congestion (traffic jams) of the road networks of large cities is a major challenge for municipal traffic management organizations. In order to manage these situations, it is crucial to understand the processes that lead to congestion and propagation, because the occurrence of a traffic jam does not merely paralyze one street or road, but could spill over onto the whole vicinity (even an entire neighborhood). Solutions can be found in professional literature, but they either oversimplify the problem, or fail to provide a scalable solution. In this article, we describe a new method that not only provides an accurate road network model, but is also a scalable solution for identifying the direction of traffic congestion propagation. Our method was subjected to a detailed performance analysis, which was based on real road network data. According to testing, our method outperforms the ones that have been used to date.


Author(s):  
Norlezah Hashim ◽  
Fakrulradzi Idris ◽  
Ahmad Fauzan Kadmin ◽  
Siti Suhaila Jaapar Sidek

Traffic lights play such important role in traffic management to control the traffic on the road. Situation at traffic light area is getting worse especially in the event of emergency cases. During traffic congestion, it is difficult for emergency vehicle to cross the road which involves many junctions. This situation leads to unsafe conditions which may cause accident. An Automatic Traffic Light Controller for Emergency Vehicle is designed and developed to help emergency vehicle crossing the road at traffic light junction during emergency situation. This project used Peripheral Interface Controller (PIC) to program a priority-based traffic light controller for emergency vehicle. During emergency cases, emergency vehicle like ambulance can trigger the traffic light signal to change from red to green in order to make clearance for its path automatically. Using Radio Frequency (RF) the traffic light operation will turn back to normal when the ambulance finishes crossing the road. Result showed the design is capable to response within the range of 55 meters. This project was successfully designed, implemented and tested.


2018 ◽  
Vol 19 (6) ◽  
pp. 1200-1204
Author(s):  
Radosław Klusek

By making changes in the regulations on road signs there should be specified a date for which the road manager should adapt an existing signs. The existing rules significantly changed the rules for the use of road signs. Some of these modifications concerned the traffic lights. According with that document these changes should be made up to 31 December 2008. As seen in Polish cities, not all managements have managed to adjust the traffic lights to the new rules. The following article presents results of analyzes to adapt 45 traffic lights to the current rules. Those traffic lights were redesigned to create Intelligent Transport Systems in Bydgoszcz.


Author(s):  
Aditi Agrawal ◽  
Rajeev Paulus

Traffic signals play an important role in controlling and coordinating the traffic movement in cities especially in urban areas. As the traffic is exponentially increasing in cities and the pre-timed traffic light control is insufficient in effective timing of the traffic lights, it leads to poor traffic clearance and ultimately to heavy traffic congestion at intersections. Even the Emergency vehicles like Ambulance and Fire brigade are struck at such intersections and experience a prolonged waiting time. An adaptive and intelligent approach in design of traffic light signals is desirable and this paper contributes in applying fuzzy logic to control traffic signal of single four-way intersection giving priority to the Emergency vehicle clearance. The proposed control system is composed of two parallel controllers to select the appropriate lane for green signal and also to decide the appropriate green light time as per the real time traffic condition. Performance of the proposed system is evaluated by using simulations and comparing with pre-timed control system in changing traffic flow condition. Simulation results show significant improvement over the pre-timed control in terms of traffic clearance and lowering of Emergency vehicle wait time at the intersection especially when traffic intensity is high.


The permanent growth of the population in smart cities has increased the number of vehicles. Consequently the problem of traffic congestion has become one of the main problems to be solved by today's traffic control systems, especially at traffic intersections. In fact, the traditional method which avoids the congestion in a crossroads is the classic command (Timing) by means of traffic lights. However, the traffic light management modes are sometimes based on classic models which make them unsuitable for the treatment of different experienced situations in traffic (either dense or fluid traffic). Fortunately, thanks to the significant progress made, especially the use of New Information Technologies and Communications for example Wireless Sensor Network, for the regulation of traffic, are solutions become central in the field of urban traffic management. They have made it possible to propose more effective control mechanisms to reduce the effects of traffic congestion. In this article, we will present the continuation of our work [1], the objective is to offer to the users of the road a crossing time as long as possible, while preventing the car cap to propagate over a distance that is set between two wireless sensors, to do this, we can act on the setting of the traffic light to regulate traffic in intersections.


Author(s):  
Mohammed Abdulsami Shahid

Accidents are the major causes of death, be it in today's most technologically advanced world. Road accidents and traffic congestion are the major problems in urban areas. Currently there is no technology for detection of accidents. Also due to the delay in reaching of the ambulance to the accident location and the traffic congestion in between accident location and hospital increases the chances of the death of the victim. There is a need of introducing a system to reduce the loss of life due to accidents and the time taken by the ambulance to reach the hospital. Yearly lots of visually impaired people lose their lives by being victims of such accidents. To overcome the drawback of existing system we will implement the new system in which there is an automatic detection of accident through sensors and it will send the location of the accident to the Nearest Hospital, Police station and to the family members which will rush an ambulance from a nearest hospital to the accident spot. This will minimize the time of ambulance to reach the hospital. To achieve this we are using like MEMS (Micro Electro Mechanical Systems) (MPU6050), And using GPS module we will get the location where the accident took place and by using NODEMCU and IFTTT messaging protocol we will send the message of obtained location. Along with this there would be control of traffic light signals in the path of the ambulance using RFID TECHNOLOGY. This system is fully automated, thus it finds the accident spot, controls the traffic lights, helping to reach the hospital in time.


2016 ◽  
Vol 12 (4) ◽  
pp. 36-45
Author(s):  
Maria Alexandra Roman Popescu

Abstract Through this paper the author aims to study and find solutions for automatic detection of traffic light position and for automatic calculation of the waiting time at traffic light. The first objective serves mainly the road transportation field, mainly because it removes the need for collaboration with local authorities to establish a national network of traffic lights. The second objective is important not only for companies which are providing navigation solutions, but especially for authorities, institutions, companies operating in road traffic management systems. Real-time dynamic determination of traffic queue length and of waiting time at traffic lights allow the creation of dynamic systems, intelligent and flexible, adapted to actual traffic conditions, and not to generic, theoretical models. Thus, cities can approach the Smart City concept by boosting, efficienting and greening the road transport, promoted in Europe through the Horizon 2020, Smart Cities, Urban Mobility initiative.


Author(s):  
Yu.Ya. Komarov ◽  
◽  
S.V. Ganzin ◽  
D.D. Silchenkov ◽  
◽  
...  

The main method of determining transport delay in the national methodical and educational literature is its calculation according to the methodology (formula) of F. Webster (1958), which is based on the theory of mass service. However, in conditions of high traffic congestion or traffic congestion, experimental and calculated data at simple intersections vary considerably. The definition of delays for complex intersections, in particular for the Hamburger Through-About Intersection (further HTAI) is also contradictory. The aim of the study is to improve determine the area of application of F. Webster’s formula for a little-studied roundabouts HTAI. For the first time, the paper addresses the selection of parameters of the HTAI in urban settings, and also introduces a method of calculating transport delays depending on various factors. For the purpose of the study, the hypothesis is put forward that the application of the Webster formula depends on the intensity of traffic on the main and secondary roads, the degree of loading in directions and transport demand for left-turning traffic. According to the hypothesis, on the basis of the collected data, transport delays are calculated on the HTAI from the selected factors. To justify the adequacy of calculations, the method of simulation in the Aimsun (micro-modeling) software complex is used. On the basis of in-kind surveys of section of the road network, a high-reliability simulation model was created, reflecting the current situation at regulated intersection, and also assessed the feasibility of using the HTAI on a section of the road network. There are dependencies of transport delays on traffic in the main and secondary road, effective duration of the cycle of regulation on the main road, traffic on roundabout, the diameter of the islet for the HTAI. Thus, based on the resulting mathematical model, the range of application of the Webster formula is defined, which is affected by the number of lanes for the main and secondary roads, the degree of loading in directions and the number of lanes on the ring. Further research involves the development of a methodology for calculating the parameters of the HTAI.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 527
Author(s):  
Vaibhav Jain ◽  
Tanay . ◽  
Saransh Gangele ◽  
K Kalimuthu

In recent years, with the advancement of vehicular communication, it is possible to detect various road signs and provide traffic light information to the driver inside the vehicle with the application of heads-up display (HUD). It detects road signs, does basic classifications and accordingly directs the driver to slow down or stop the vehicle. The vehicle’s heads-up display keeps the driver focused by providing road warnings, speed limit, traffic signals and some vital navigation information in the driver’s line of sight(LOS). This system has 4 phases, Image recognition, wireless communication, obstacle detection and driver mechanism. This system aims to create a prototype of a smart driver assistance system which provides better road traffic and driver’s safety in countries with high traffic congestion where fully automated vehicles cannot function effectively. This system can be easily implemented in real time scenarios to reduce accidents and enhance the convenience of driving. 


Sign in / Sign up

Export Citation Format

Share Document