scholarly journals Influence of annealing temperature on the structural and optical properties of As30Te70 thin films

2017 ◽  
Vol 35 (2) ◽  
pp. 335-345 ◽  
Author(s):  
A.M. Abd-Elnaiem ◽  
M. Mohamed ◽  
R.M. Hassan ◽  
A.A. Abu-Sehly ◽  
M.A. Abdel-Rahim ◽  
...  

Abstract Chalcogenide glasses have attracted much attention largely due to their interesting physical and chemical properties. Though few published articles exist on the As-Te system, little is known about the optical properties of eutectic or near eutectic composition of As-Te system upon heat treatment. Therefore, this paper reports the effects of annealing temperature on the structural and optical parameters of As30Te70 thin films. The bulk and thin films of 150 nm thick As30Te70 chalcogenide glasses were prepared by melt-quenching and thermal evaporation techniques, respectively. The glass transition and crystallization reactions of the bulk samples were investigated using differential scanning calorimetry (DSC). The influence of annealing temperature on the transformation of the crystal structure was studied by X-ray diffraction (XRD), while the surface morphology of the annealed samples was examined using scanning electron microscope (SEM). The optical band gap, refractive index and extinction coefficient were also calculated. The DSC scans showed that the melting temperature remains constant at 636.56 K. In addition, other characteristic temperatures such as the glass transition temperature, the onset crystallization temperature, and the crystallization peak temperature increase with increasing the heating rate. The crystalline phases for the as-prepared and annealed films consist of orthorhombic As, hexagonal Te, and monoclinic As2Te3 phases. Furthermore, the average crystallite size, strain, and dislocation density depend on the annealing temperature. The optical absorption results revealed that the investigated films have a direct transition, and their optical energy gap decreases from 1.82 eV to 1.49 eV as the annealing temperature increases up to 433 K. However, the refractive index, extinction coefficient, dielectric constant and the ratio of free carrier concentration to its effective mass, increase with increasing the annealing temperature.

2018 ◽  
Vol 12 (3) ◽  
pp. 209-217 ◽  
Author(s):  
Alaa Abd-Elnaiem ◽  
Samar Moustafa

Chalcogenide glasses have received lots of attention because of their superior optical properties. To optimize these properties and expand areas of applications, more studies are required to establish the extent to which the parameters can be tuned over a wide range of annealing temperatures and heating rates. To do this, bulk and thin ?150 nm As30Te67Ga3 films were prepared by melt-quenching and thermal evaporation techniques, respectively. The phase transition was investigated using differential scanning calorimeter (DSC) while the crystal structures were studied by X-ray diffraction (XRD). Characteristic temperatures such as the glass transition, crystallization and melting temperature of the bulk glass were found to depend on the heating rate. The activation energy of glass transition was 167.29 kJ/mol while the energy of crystallization was 103.98 kJ/mol. XRD results indicated that the annealed films showed more crystallinity, larger average crystallite size, lower dislocation density and lower strain as annealing temperature increased. According to the Avrami exponent, a combination of two and three-dimensional crystal growth with heterogeneous nucleation are possible mechanisms for the crystallization process. Moreover, optical constants such as the optical band gap, refractive index, extinction coefficient, high-frequency dielectric constants, real and imaginary parts of dielectric constants were found to strongly depend on the annealing temperature. The optical energy gap decreased from 1.1 to 0.89 eV as the annealing temperature increased from 373 to 433K. These results indicate that thermal annealing is a major factor that can be used to tune the crystal structure, and hence the optical properties of As30Te67Ga3 system.


2019 ◽  
Vol 16 (3) ◽  
pp. 0588 ◽  
Author(s):  
Al-Taa'y Et al.

       Optical properties and surface morphology of pure and doped Polystyrene films with different divalent metals of Zn, Cu and Sn and one concentration percentage have been studied. Measurements of UV-Vis spectrophotometer and AFM spectroscopy were determined. The absorbance, transmittance and reflectance spectrums were used to study different optical parameters such as absorption coefficient, refractive index, extinction coefficient and energy gap in the wavelengths rang 200-800nm. These parameters have increased in the presence of the metals. The change in the calculated values of energy gaps with doping metals content has been investigated in terms of PS matrix structural modification. The value of optical energy gap was found decreasing from 4.5eV of pure PS to reach 4.45, 4.38 and 4.32eV for Zn, Cu and Sn respectively. Measurement by AFM spectroscopy was done for two and three dimensional topographic images. From figures, the data of roughness average were 7.29, 7.31, 3.37 and 6.73nm for samples (Blank, Zn, Cu and Sn) respectively.


2013 ◽  
Vol 334-335 ◽  
pp. 290-293 ◽  
Author(s):  
N. Baydogan ◽  
T. Ozdurmusoglu ◽  
Huseyin Cimenoglu ◽  
A.B. Tugrul

Doped ZnO:Al thin films were deposited on glass substrates by the solgel dip technique. Optical parameters such as the refractive index and the extinction coefficient tend to change with increasing annealing temperature.


2016 ◽  
Vol 23 (02) ◽  
pp. 1650001 ◽  
Author(s):  
ZAKI S. KHALIFA

Crystal structure, microstructure, and optical properties of TiO2 thin films deposited on quartz substrates by metal-organic chemical vapor deposition (MOCVD) in the temperature range from 250[Formula: see text]C to 450[Formula: see text]C have been studied. The crystal structure, thickness, microstructure, and optical properties have been carried out using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), atomic force microscope (AFM), and UV-visible transmittance spectroscopy, respectively. XRD patterns show that the obtained films are pure anatase. Simultaneously, the crystal size calculated using XRD peaks, and the grain size measured by AFM decrease with the increase in deposition temperature. Moreover, the texture of the films change and roughness decrease with the increase in deposition temperature. The spectrophotometric transmittance spectra have been used to calculate the refractive index, extinction coefficient, dielectric constant, optical energy gap, and porosity of the deposited films. While the refractive index and dielectric constant decrease with the increase of deposition temperature, the porosity shows the opposite.


Author(s):  
Abubakr Mahmoud Hamid ◽  
Hassan Wardi Hassan ◽  
Fatima Ahmed Osman

Solar energy is already has being widely successfully used in residential and industrial setting for thermal and electrical application such as space technology, communication, etc. I. Aims: The aim of this study the effect of the annealing temperature in improvement optical properties of titanium oxide nanostructure doped iron oxide for use in thin film. Study Design: The spray pyrolysis deposition method used for preparation the nanostructure material. Place and Duration of Study: This study was conducted in department of physics and department of materials sciences, Al-Neelain University, between January 2016 and January 2019.  Methodology: Thin films of Titanium Oxide (TiO2) doped Iron Oxide (Fe2O3) have been prepared by chemical spray pyrolysis deposition technique. A laboratory designed glass atomizer was used for spraying the aqueous solution. Which has an output nozzle about 1 mm. then film were deposited on preheated cleaned glass substrates at temperature of 400°C. we used different concentration to study optical parameters. A 1.5 g TiO2 powder of anatase structure doped with 1.5 g of Fe2O3 was mixed with 2 ml of ethanol and stirred using a magnetic stirrer for 30 minutes to form TiO2 paste to obtain the starting solution for deposition and spray time was 10 s and spray interval 2 min was kept constant. The carrier gas (filtered compressed air) was maintained at a pressure of 105 Nm-2, and distance between nozzle and substrate was about 30 cm ± 1 cm. Thickness of sample was measured using the weighting method and was found to be around 400nm. Optical transmittance and absorbance were record in wavelength range of (200-1100) nm using UV-Visible spectrophotometer (Shimadzu Company Japan). Results: The results obtained showed that the optical band gap decreased from 5.6eV before annealing to (3.9, 3.26, 3.24 and 3.27 eV) after annealing temperature at(450° – 500°) for TiO2:Fe2O3 thin films, this result refer to the broadening of  secondary levels that product by TiO2: doping to the Fe2O2thin films. Also the results showed the variation of refractive index with wavelength for different concentration after annealing temperature at (450° – 500°) of TiO2: Fe2O3 films from this figure, it is clear that n decrease with low concentration and increase with high concentration after annealing temperature that mean the density is decreased of this films. In addition the extinction coefficient of TiO2:Fe2O3 thin films recorded before annealing and with different concentration (1.1, 1.2, 1,5 and 1,6) and in the range of (300 – 1200) nm and at annealing temperature from (450° – 500°). It observed from that the extinction coefficient, decrease sharply with the increase of wavelength for all prepared films and all the sample after annealing is interference between them accept the sample before annealing is far from the other sample. Conclusion: The TiO2 thin film shows better result after annealing; By exposing temperature during annealing process degree at (450o- 500o) is found to be the best temperature for annealing TiO2 thin film. The study concluded that an annealing temperature Contributes to the improvement of optical properties related to increasing the efficiency of the solar cell, especially the refractive index, energy gap, extinction coefficient.


2019 ◽  
Vol 15 (32) ◽  
pp. 99-113
Author(s):  
Mahdi Hasan Suhail

Polymer films of PEG and PVA and their blend with differentconcentrations of MnCl2 (0, 2, 4, 6 and 10 %.wt) were study usingcasting technique. The X-ray spectra of pure PEG, PVA andPVA:PEG films and with addition of 2% concentrations from(MnCl2) show amorphous structures. The results for FTIR show theinteraction between the filler and polymer blend results indecreasing crystallinity with rich amorphous phase. Thisamorphous nature confirms the complexation between the filler andthe polymer blend. The optical properties of (PVA:PEG/MnCl2)contain the recording of absorbance (A) and explain that theabsorption coefficient (α), refractive index (n), extinction coefficient(ko) and the dielectric constants (real and imaginary part) increasewith increasing the concentration of Composite (PVA:PEG/MnCl2).The optical energy gap for electrons transitions both are direct andindirect allowed.


Author(s):  
Nahida B. Hasan ◽  
Mohammed Ahmed Mohammed

In this paper, the design of spray pyrolysis system to prepare thin films of various materials system. The study showed that films prepared with good characteristics. films were prepared from lead oxide PbO this way. The study of the optical properties of these films and through recording the absorbance spectrum and transmittance spectrum of films prepared in the wavelength range (300-1100) nm . Optical constant for thin films prepared such as absorption coefficient, the extinction coefficient , the refractive index and the optical energy gap was calculated as well. films prepared found that it has a direct energy gap value 3.1eV.


2019 ◽  
Vol 16 (39) ◽  
pp. 1-10
Author(s):  
Lamiaa K. Abbas

The effect of heat treatment using different annealing temperatures on optical properties of bulk heterojunction blend (BHJ) Alq3: C60 thin films which are fabricated by the spin coating technique were investigated in this study. The films have been coated on a glass substrate with speed of 2000 rpm for one min and treated with different annealing temperature (373, 423 and 473) K under vacuum. The optical properties and the chemical bonds structure of blends as-deposited and heat treated have been studied by UV-Vis spectroscopic and Fourier Transform-Infra Red (FTIR) measurements respectively. The results of UV visible show that the optical energy gap decreasing with increasing the annealing temperature for the ratio (100:1) while decreasing with increasing the annealing temperature for ratio (100:10). The FTIR spectra measurement were applied to know the type of the bonds of Alq3: C60 BHJ thin films.


2021 ◽  
Vol 19 (49) ◽  
pp. 22-31
Author(s):  
Wasan A. Al-Taa'y ◽  
Bushra A. Hasan

The properties of structural and optical of pure and doped nano titanium dioxide (TiO2) films, prepared using chemical spray pyrolysis (CPS) technique, with different nanosize nickel oxide (NiO) concentrations in the range (3-9)wt% have been studied. X-Ray diffraction (XRD) technique where using to analysis the structure properties of the prepared thin films. The results revealed that the structure properties of TiO2 have polycrystalline structure with anatase phase. The parameters, energy gap, extinction coefficient, refractive index, real and imaginary parts were studied using absorbance and transmittance measurements from a computerized ultraviolet visible spectrophotometer (Shimadzu UV-1601 PC) in the wavelengths range (300-800)nm. Optical properties of TiO2 affected by the adding of NiO impurity where the transmittance increased as NiO concentration increased but with more adding the transmittance returned to decrease again. It was found the extinction coefficient, refractive index, real and imaginary parts values decreased with increasing doping percentage up to 7% and then increases occur one more again at 9%. Energy gap values increased after doping with NiO where the values lies in the range was 3.31 to 3.51 eV .


Author(s):  
Wasmaa Abdulsattar Jabbar

Copper oxide prepared with various contains of Manganese by chemical spray pyrolysis. Some optical properties are studied from recording the absorption spectra via UV-Visible spectrophotometer in the range of 460-900 nm. The absorbance increased with increasing Mn-contain in the CuO thin films, and the absorption coefficient. Extinction coefficient and refractive index are decreased with increasing Mn-contain in the CuO thin films, also the energy gap shifted from 2 eV to 1.91 eV after 4%Mn additive.


Sign in / Sign up

Export Citation Format

Share Document