scholarly journals Thermoelectric properties of Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 skutterudites prepared by HPHT method

2017 ◽  
Vol 35 (3) ◽  
pp. 496-500 ◽  
Author(s):  
Lingjiao Kong ◽  
Hongan Ma ◽  
Yuewen Zhang ◽  
Xin Guo ◽  
Bing Sun ◽  
...  

AbstractN-type polycrystalline skutterudite compounds Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 with the bcc crystal structure were synthesized by high pressure and high temperature (HPHT) method. The synthesis time was sharply reduced to approximately half an hour. Typical microstructures connected with lattice deformations and dislocations were incorporated in the samples of Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 after HPHT. Electrical and thermal transport properties were meticulously researched in the temperature range of 300 K to 700 K. The Fe0.2Ni0.15Co3.65Sb12 sample shows a lower thermal conductivity than that of Ni0.15Co3.85Sb12. The dimensionless thermoelectric figure-of-merit (zT) reaches the maximal values of 0.52 and 0.35 at 600 K and 700 K respectively, for Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 samples synthesized at 1 GPa.

2011 ◽  
Vol 415-417 ◽  
pp. 1615-1619
Author(s):  
Bing Ke Qin ◽  
Yong Hua Ji ◽  
Zhi Li ◽  
Xiao Peng Jia

Polycrystalline filled Skutterudite compounds BaxCo4Sb12(0-x-0.5) are synthesized by high pressure and high temperature (HPHT) technique. The thermal conductivity for CoSb3is depressed significantly by Ba-filling combined HPHT technique. The value of 1.25 Wm-1K-1for Ba0.372Co4Sb12is obtained at 633K. The dimensionless thermoelectric figure of merit ZT, increases with temperature increasing and reaches a maximal value of 1.01 at 663 K.


2003 ◽  
Vol 793 ◽  
Author(s):  
Y. Amagai ◽  
A. Yamamoto ◽  
C. H. Lee ◽  
H. Takazawa ◽  
T. Noguchi ◽  
...  

ABSTRACTWe report transport properties of polycrystalline TMGa3(TM = Fe and Ru) compounds in the temperature range 313K<T<973K. These compounds exhibit semiconductorlike behavior with relatively high Seebeck coefficient, electrical resistivity, and Hall carrier concentrations at room temperature in the range of 1017- 1018cm−3. Seebeck coefficient measurements reveal that FeGa3isn-type material, while the Seebeck coefficient of RuGa3changes signs rapidly from large positive values to large negative values around 450K. The thermal conductivity of these compounds is estimated to be 3.5Wm−1K−1at room temperature and decreased to 2.5Wm−1K−1for FeGa3and 2.0Wm−1K−1for RuGa3at high temperature. The resulting thermoelectric figure of merit,ZT, at 945K for RuGa3reaches 0.18.


2014 ◽  
Vol 33 (1) ◽  
pp. 59-63
Author(s):  
Song Hao ◽  
Hong An Ma ◽  
Le Deng ◽  
Kai Kai Jie ◽  
Zhe Liu ◽  
...  

AbstractPolycrystalline skutterudite Ba0.4Co4Sb11.7Te0.3 with a bcc crystal structure was prepared by the High-Pressure and High-Temperature (HPHT) method. The study explored a chemical method for introducing Ba atoms into the voids of CoSb3 to optimize the thermoelectric figure of merit ZT in the system of Ba0.4Co4Sb11.7Te0.3. The samples were characterized by X-ray diffraction, electron microprobe analysis, and thermoelectric properties measurement. The electrical resistivity, Seebeck coefficients and thermal conductivities of the samples were measured in the temperature range of 300–743 K. The power factor and the figure of merit, ZT, of the samples all increased with the increasing temperature. A dimensionless thermoelectric figure of merit of 0.87 at 743 K was achieved for n-type Ba0.4Co4Sb11.7Te0.3 at last. The results indicated Ba-filled CoSb3 prepared by HPHT method is an effective method to greatly enhance the thermoelectric properties of skutterudite compounds.


2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


2001 ◽  
Vol 16 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Xinfeng Tang ◽  
Lidong Chen ◽  
Takashi Goto ◽  
Toshio Hirai

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Adul Harnwunggmoung ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

AbstractCoSb3 is known as a skutterudite compound that could exhibit high thermoelectric figure of merit. However, the thermal conductivity of CoSb3 is relatively high. In order to enhance the thermoelectric performance of this compound, we tried to reduce the thermal conductivity of CoSb3 by substitution of Rh for Co and by Tl-filling into the voids. The polycrystalline samples of (Co,Rh)Sb3 and Tl-filled CoSb3 were prepared and the thermoelectric properties such as the Seebeck coefficient, electrical resistivity, and thermal conductivity were measured in the temperature range from room temperature to 750 K. The Rh substitution for Co reduced the lattice thermal conductivity, due to the alloy scattering effect. The minimum value of the lattice thermal conductivity was 4 Wm-1K-1 at 750 K obtained for (Co0.7Rh0.3)Sb3. Also the lattice thermal conductivity rapidly decreased with increasing the Tl-filling ratio. T10.25Co4Sb12 exhibited the best ZT values; the maximum ZT was 0.9 obtained at 600 K.


2012 ◽  
Vol 519 ◽  
pp. 188-192 ◽  
Author(s):  
P.Z. Ying ◽  
H. Zhou ◽  
Y.L. Gao ◽  
Y.Y. Li ◽  
Y.P. Li ◽  
...  

Here we report the thermoelectric properties of a wide–gap chalcopyrite compound AgInSe2, and observed the remarkable improvement in electrical conductivity σ, due to the bandgap (Eg = 1.12 eV) reduction compared to In2Se3. The improvement in σ is directly responsible for the enhancement of thermoelectric figure of merit ZT, though the thermal conductivity is much higher at 500 ~ 724 K. The maximum ZT value is 0.34 at 724 K, increasing by a factor of 4, indicating that this chalcopyrite compound is of a potential thermoelectric candidate if further optimizations of chemical compositions and structure are made.


RSC Advances ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 5528-5534 ◽  
Author(s):  
Aparabal Kumar ◽  
P. Dhama ◽  
Deepash S. Saini ◽  
P. Banerji

Zn substitution at Cu site in Cu3SbSe4 reduces the thermal conductivity giving beneficial effect to the thermoelectric figure of merit.


2016 ◽  
Vol 30 (07) ◽  
pp. 1650087 ◽  
Author(s):  
Bing Sun ◽  
Xiaopeng Jia ◽  
Dexuan Huo ◽  
Hairui Sun ◽  
Yuewen Zhang ◽  
...  

Ba8Cu6Ge[Formula: see text]Si[Formula: see text] were successfully synthesized by a simple high pressure and high temperature (HPHT) method to investigate the microstructures and thermoelectric (TE) properties. After high pressure synthesis, a highly dense bulk material with lots of fine-layered structure, lattice defects and disorders has been obtained. As expected, the thermal conductivity decreased greatly and the ZT value has been improved significantly, which reaches up to 0.43 at around 773 K. Comparing with other methods, HPHT could shorten the synthesis time from several days to half an hour. It reveals that the HPHT method will become an effective approach for optimizing the TE performance of these materials.


2016 ◽  
Vol 4 (9) ◽  
pp. 1871-1880 ◽  
Author(s):  
Gabin Guélou ◽  
Paz Vaqueiro ◽  
Jesús Prado-Gonjal ◽  
Tristan Barbier ◽  
Sylvie Hébert ◽  
...  

The thermoelectric figure of merit of TiS2 is increased by 25% through the intercalation of low levels of cobalt due to an increased electrical conductivity, arising from charge transfer, and a reduced thermal conductivity resulting from disorder.


Sign in / Sign up

Export Citation Format

Share Document