Relative density prognosis for directed energy deposition with the help of artificial neural networks

2021 ◽  
Vol 63 (1) ◽  
pp. 41-47
Author(s):  
Angelina Marko ◽  
Andreas Schafner ◽  
Julius Raute ◽  
Michael Rethmeier

Abstract Additive manufacturing, and therefore directed energy deposition, is gaining more and more interest from industrial users. However, quality assurance for the components produced is still a challenge. Machine learning, especially using artificial neuronal networks, is a potential method for ensuring a high-quality standard. Based on process parameters and monitoring data, part quality can be predicted. A further advantage is the ability to constantly learn and adopt to slight process changes. First tests using artificial neural networks focus on the prediction of track geometry. The results show that even a small data set is enough to provide high accuracy in the predictions. In this work, an artificial neural network for the predictive analysis of relative density in laser powder cladding has been developed. A central composite experimental design is used to generate 19 data sets. Input variables are laser power, feed rate and powder mass flow. Cubes are built up where density is considered as a target value. Several neural networks are trained and evaluated with these data sets. Different topologies and initial weights are considered. The best network reaches a confidence level of around 90 % for the prediction of relative density based on the process parameters. Finally, the optimization of the generalization performance is investigated. To this purpose, methods of variation in error limit as well as cross-validation are applied. In this way, density is predictable by an artificial neural network with an accuracy of about 95 %.

2017 ◽  
Vol 43 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Sinan Mehmet Turp

AbstractThis study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.


2008 ◽  
Vol 2 ◽  
pp. BBI.S764 ◽  
Author(s):  
Ravit Arav-Boger ◽  
Yuval S. Boger ◽  
Charles B. Foster ◽  
Zvi Boger

A large number of CMV strains has been reported to circulate in the human population, and the biological significance of these strains is currently an active area of research. The analysis of complex genetic information may be limited using conventional phylogenetic techniques. We constructed artificial neural networks to determine their feasibility in predicting the outcome of congenital CMV disease (defined as presence of CMV symptoms at birth) based on two data sets: 54 sequences of CMV gene UL144 obtained from 54 amniotic fluids of women who contracted acute CMV infection during their pregnancy, and 80 sequences of 4 genes (US28, UL144, UL146 and UL147) obtained from urine, saliva or blood of 20 congenitally infected infants that displayed different outcomes at birth. When data from all four genes was used in the 20-infants’ set, the artificial neural network model accurately identified outcome in 90% of cases. While US28 and UL147 had low yield in predicting outcome, UL144 and UL146 predicted outcome in 80% and 85% respectively when used separately. The model identified specific nucleotide positions that were highly relevant to prediction of outcome. The artificial neural network classified genotypes in agreement with classic phylogenetic analysis. We suggest that artificial neural networks can accurately and efficiently analyze sequences obtained from larger cohorts to determine specific outcomes. The ANN training and analysis code is commercially available from Optimal Neural Informatics (Pikesville, MD).


2020 ◽  
Author(s):  
Henrique Hesse ◽  
Rejane Frozza ◽  
Valeriano Corbellini ◽  
Cézane Reuter ◽  
Miria Burgos

This paper aims to look at the viability of the use of artificial neural networks to solve nonlinear correlations between infrared spectra and biochemical quantification tests, to build a computational system to predict the levels of glycaemic and lipid profiles using infrared spectroscopy. The studies of one of the parameters was modelled and showed signs of viability to quantify all parameters with the suggested methodology. Therefore, more complex and larger data sets are going to be tested with this technique.


2017 ◽  
Vol 9 (4) ◽  
pp. 367-379 ◽  
Author(s):  
Stefan Jaensch ◽  
Wolfgang Polifke

Artificial neural networks are a popular nonlinear model structure and are known to be able to describe complex nonlinear phenomena. This article investigates the capability of artificial neural networks to serve as a basis for deducing nonlinear low-order models of the dynamics of a laminar flame from a Computational Fluid Dynamics (CFD) simulation. The methodology can be interpreted as an extension of the CFD/system identification approach: a CFD simulation of the flame is perturbed with a broadband, high-amplitude signal and the resulting fluctuations of the global heat release rate and of the reference velocity are recorded. Thereafter, an artificial neural network is identified based on the time series collected. Five data sets that differ in amplitude distribution and length were generated for the present study. Based on each of these data sets, a parameter study was conducted by varying the structure of the artificial neural network. A general fit-value criterion is applied and the 10 artificial neural networks with the highest fit values are selected. Comparing of these 10 artificial neural networks allows to obtain information on the uncertainty encountered. It is found that the methodology allows to capture the forced response of the flame reasonably well. The validation against the forced response, however, depends strongly on the forcing signal used. Therefore, an additional validation criterion is investigated. The artificial neural networks are coupled with a thermoacoustic network model. This allows to model self-excited thermoacoustic oscillations. If the training time series are sufficiently long, this coupled model allows to predict the trend of the root mean square values of fluctuations of the global heat release rate. However, the prediction of the maximal value of the fluctuation amplitude is poor. Another drawback found is that even if very long-time series are available, the behaviour of artificial neural networks cannot be guaranteed. It is concluded that more sophisticated nonlinear low-order models are necessary.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


2019 ◽  
Vol 26 ◽  
pp. 36-46
Author(s):  
S. KONOVALOV ◽  

In the proposed article, various methods of constructing an artificial neural network as one of the components of a hybrid expert system for diagnosis were investigated. A review of foreign literature in recent years was conducted, where hybrid expert systems were considered as an integral part of complex technical systems in the field of security. The advantages and disadvantages of artificial neural networks are listed, and the main problems in creating hybrid expert systems for diagnostics are indicated, proving the relevance of further development of artificial neural networks for hybrid expert systems. The approaches to the analysis of natural language sentences, which are used for the work of hybrid expert systems with artificial neural networks, are considered. A bulletin board is shown, its structure and principle of operation are described. The structure of the bulletin board is divided into levels and sublevels. At sublevels, a confidence factor is applied. The dependence of the values of the confidence factor on the fulfillment of a particular condition is shown. The links between the levels and sublevels of the bulletin board are also described. As an artificial neural network architecture, the «key-threshold» model is used, the rule of neuron operation is shown. In addition, an artificial neural network has the property of training, based on the application of the penalty property, which is able to calculate depending on the accident situation. The behavior of a complex technical system, as well as its faulty states, are modeled using a model that describes the structure and behavior of a given system. To optimize the data of a complex technical system, an evolutionary algorithm is used to minimize the objective function. Solutions to the optimization problem consist of Pareto solution vectors. Optimization and training tasks are solved by using the Hopfield network. In general, a hybrid expert system is described using semantic networks, which consist of vertices and edges. The reference model of a complex technical system is stored in the knowledge base and updated during the acquisition of new knowledge. In an emergency, or about its premise, with the help of neural networks, a search is made for the cause and the control action necessary to eliminate the accident. The considered approaches, interacting with each other, can improve the operation of diagnostic artificial neural networks in the case of emergency management, showing more accurate data in a short time. In addition, the use of such a network for analyzing the state of health, as well as forecasting based on diagnostic data using the example of a complex technical system, is presented.


2019 ◽  
Author(s):  
René Janßen ◽  
Jakob Zabel ◽  
Uwe von Lukas ◽  
Matthias Labrenz

AbstractArtificial neural networks can be trained on complex data sets to detect, predict, or model specific aspects. Aim of this study was to train an artificial neural network to support environmental monitoring efforts in case of a contamination event by detecting induced changes towards the microbial communities. The neural net was trained on taxonomic cluster count tables obtained via next-generation amplicon sequencing of water column samples originating from a lab microcosm incubation experiment conducted over 140 days to determine the effects of the herbicide glyphosate on succession within brackish-water microbial communities. Glyphosate-treated assemblages were classified correctly; a subsetting approach identified the clusters primarily responsible for this, permitting the reduction of input features. This study demonstrates the potential of artificial neural networks to predict indicator species in cases of glyphosate contamination. The results could empower the development of environmental monitoring strategies with applications limited to neither glyphosate nor amplicon sequence data.Highlight bullet pointsAn artificial neural net was able to identify glyphosate-affected microbial community assemblages based on next generation sequencing dataDecision-relevant taxonomic clusters can be identified by a stochastically subsetting approachJust a fraction of present clusters is needed for classificationFiltering of input data improves classification


2021 ◽  
Author(s):  
Kathakali Sarkar ◽  
Deepro Bonnerjee ◽  
Rajkamal Srivastava ◽  
Sangram Bagh

Here, we adapted the basic concept of artificial neural networks (ANN) and experimentally demonstrate a broadly applicable single layer ANN type architecture with molecular engineered bacteria to perform complex irreversible...


Author(s):  
Suraphan Thawornwong ◽  
David Enke

During the last few years there has been growing literature on applications of artificial neural networks to business and financial domains. In fact, a great deal of attention has been placed in the area of stock return forecasting. This is due to the fact that once artificial neural network applications are successful, monetary rewards will be substantial. Many studies have reported promising results in successfully applying various types of artificial neural network architectures for predicting stock returns. This chapter reviews and discusses various neural network research methodologies used in 45 journal articles that attempted to forecast stock returns. Modeling techniques and suggestions from the literature are also compiled and addressed. The results show that artificial neural networks are an emerging and promising computational technology that will continue to be a challenging tool for future research.


Author(s):  
Mostafijur Rahaman ◽  
Sankar Prasad Mondal ◽  
Shariful Alam

In this chapter, different inventory control problems are formulated in fuzzy environment and solved by artificial neural network. Due to present the non-linearity associated with the differential equation in fuzzy environment, the solution procedure may be very complicated. To avoid the situation, artificial neural networks play an important role. In this chapter, different inventory control problems are formulated in fuzzy environment and solved by artificial neural network. Due to present the non-linearity associated with the differential equation in fuzzy environment, the solution procedure may be very complicated. To avoid the situation, artificial neural networks play an important role.


Sign in / Sign up

Export Citation Format

Share Document