scholarly journals Vector optomechanical entanglement

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ying Li ◽  
Ya-Feng Jiao ◽  
Jing-Xue Liu ◽  
Adam Miranowicz ◽  
Yun-Lan Zuo ◽  
...  

Abstract The polarizations of optical fields, besides field intensities, provide more degrees of freedom to manipulate coherent light–matter interactions. Here, we propose how to achieve a coherent switch of optomechanical entanglement in a polarized-light-driven cavity system. We show that by tuning the polarizations of the driving field, the effective optomechanical coupling can be well controlled and, as a result, quantum entanglement between the mechanical oscillator and the optical transverse electric mode can be coherently and reversibly switched to that between the same phonon mode and the optical transverse magnetic mode. This ability to switch optomechanical entanglement with such a vectorial device can be important for building a quantum network being capable of efficient quantum information interchanges between processing nodes and flying photons.

Experiment shows the Moon to be asymmetrically excited by the solar wind in the classical spherical transverse electric mode. Both the magnetic dipole and quadrupole are noted, corresponding to Mie scattering, with the fields confined to the lunar interior. Leakage out of the antisolar cavity is evanescent below about 50 Hz. The low bulk conductivity of the interior (from inversion of magnetic signals) is two orders lower than for Earth at equivalent depth. This is consistent with a hot interior only if the rock conductivity function has anomalously low activation energy, suggesting low Fe3+ content. Extrapolation of the induction and the complementary transverse magnetic mode to the early solar system shows a consistent pattern of heating of the lunar core, surface, and asteroidal parent bodies independently of accretion or radionuclides. Thus fast highland and core formation can take place provided the induction is intensified by rapid solar spin and a pre-main sequence T Tauri-like plasma flow.


Author(s):  
Y. Park ◽  
B.j. Kim ◽  
J. W. Lee ◽  
O. H. Nam ◽  
C. Sone ◽  
...  

InGaN/GaN multi-quantum well (MQW) laser diodes (LDs) were grown on c-plane sapphire substrates using a multi-wafer MOCVD system. The threshold current for pulsed lasing was 1.6 A for a gain-guided laser diode with a stripe of 10 × 800 μm2. The threshold current density was 20.3 kA cm−2 and the threshold voltage was 16.5 V. The optical power ratio of transverse electric mode to transverse magnetic mode was found to be greater than 50. The characteristic temperature measured from the plot of threshold current versus measurement temperature was between 130 and 150K.


2017 ◽  
Vol 21 (4) ◽  
pp. 1012-1038 ◽  
Author(s):  
Roktaek Lim ◽  
Dongwoo Sheen

AbstractA cheapest stable nonconforming finite element method is presented for solving the incompressible flow in a square cavity without smoothing the corner singularities. The stable cheapest nonconforming finite element pair based on P1×P0 on rectangularmeshes [29] is employed with a minimal modification of the discontinuous Dirichlet data on the top boundary, where is the finite element space of piecewise constant pressures with the globally one-dimensional checker-board pattern subspace eliminated. The proposed Stokes elements have the least number of degrees of freedom compared to those of known stable Stokes elements. Three accuracy indications for our elements are analyzed and numerically verified. Also, various numerous computational results obtained by using our proposed element show excellent accuracy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tsu-Chi Chang ◽  
Kuo-Bin Hong ◽  
Shuo-Yi Kuo ◽  
Tien-Chang Lu

Abstract We reported on GaN microcavity (MC) lasers combined with one rigid TiO2 high-contrast grating (HCG) structure as the output mirror. The HCG structure was directly fabricated on the GaN structure without an airgap. The entire MC structure comprised a bottom dielectric distributed Bragg reflector; a GaN cavity; and a top HCG reflector, which was designed to yield high reflectance for transverse magnetic (TM)- or transverse electric (TE)-polarized light. The MC device revealed an operation threshold of approximately 0.79 MW/cm2 when pulsed optical pumping was conducted using the HCG structure at room temperature. The laser emission was TM polarized with a degree of polarization of 99.2% and had a small divergence angle of 14° (full width at half maximum). This laser operation demonstration for the GaN-based MC structure employing an HCG exhibited the advantages of HCGs in semiconductor lasers at wavelengths from green to ultraviolet.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tobias Schaich ◽  
Daniel Molnar ◽  
Anas Al Rawi ◽  
Mike Payne

AbstractPlanar Goubau lines show promise as high frequency, low-loss waveguides on a substrate. However, to date only numerical simulations and experimental measurements have been performed. This paper analytically investigates the surface wave mode propagating along a planar Goubau line consisting of a perfectly conducting circular wire on top of a dielectric substrate of finite thickness but infinite width. An approximate equation for the propagation constant is derived and solved through numerical integration. The dependence of the propagation constant on various system parameters is calculated and the results agree well with full numerical simulations. In addition, the spatial distribution of the longitudinal electric field is reported and excellent agreement with a numerical simulation and previous studies is found. Moreover, validation against experimental phase velocity measurements is also reported. Finally, insights gained from the model are considered for a Goubau line with a rectangular conductor. The analytic model reveals that the propagating mode of a planar Goubau line is hybrid in contrast to the transverse magnetic mode of a classic Goubau line.


1994 ◽  
Vol 03 (01) ◽  
pp. 101-116 ◽  
Author(s):  
M. ZOBOLI ◽  
S. SELLERI

A general approach based on the finite element method for analyzing optical waves guided by dielectric planar waveguides with arbitrary nonlinear media and with arbitrary refractive index distribution is considered. A complete transverse-electric and transverse-magnetic mode analysis is presented and TM polarization solutions are obtained without approximations on the biaxial nature of the nonlinear refractive index. Solution convergence and stability is discussed and both film-guided and surface-guided modes are presented for symmetrical and asymmetrical structures. Bistability and hysteresis phenomena have been investigated for TE as well as for TM modes.


Sign in / Sign up

Export Citation Format

Share Document