scholarly journals Recent progress in photodetectors based on low-dimensional nanomaterials

2018 ◽  
Vol 7 (5) ◽  
pp. 393-411 ◽  
Author(s):  
Zhenhui Li ◽  
Ke Xu ◽  
Fanan Wei

Abstract Photodetectors (PDs) have great potential in applications of imaging, telecommunication, and biological sensing. In this article, state-of-the-art achievements on typical low-dimensional nanostructured PDs and hybrid PDs are reviewed. In the 2D nanostructured PDs part, 2D transition metal dichalcogenides have a natural gap, which promise high sensitivity of photodetection. Graphene and black phosphorus can also stand for 2D nanostructured PDs due to their broadband absorption and tunable direct bandgap, respectively. In the 1D nanostructured PDs part, owing to its high photoconductive characteristic, ZnO nanowire film is a promising material for ultraviolet PDs. Carbon nanotubes show potential in infrared (IR) detection due to its unique physical properties. In the 0D nanostructured PDs part, lead sulfide has a small bandgap and large Bohr exciton radius, which collectively give it a wide spectral tunability in the IR. In the hybrid PDs part, electrical and chemical doping is applied to combine different nanomaterials to realize PDs with high performance. In each part, the present situation and major challenges are overviewed. Then, the evolutions of the methods to overcome these challenges and the tremendous research breakthroughs are demonstrated. At last, future directions that could improve the performance of PDs are discussed.

Nanophotonics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 169-197 ◽  
Author(s):  
Chee Leong Tan ◽  
Hooman Mohseni

AbstractInfrared photodetectors (IRPDs) have become important devices in various applications such as night vision, military missile tracking, medical imaging, industry defect imaging, environmental sensing, and exoplanet exploration. Mature semiconductor technologies such as mercury cadmium telluride and III–V material-based photodetectors have been dominating the industry. However, in the last few decades, significant funding and research has been focused to improve the performance of IRPDs such as lowering the fabrication cost, simplifying the fabrication processes, increasing the production yield, and increasing the operating temperature by making use of advances in nanofabrication and nanotechnology. We will first review the nanomaterial with suitable electronic and mechanical properties, such as two-dimensional material, graphene, transition metal dichalcogenides, and metal oxides. We compare these with more traditional low-dimensional material such as quantum well, quantum dot, quantum dot in well, semiconductor superlattice, nanowires, nanotube, and colloid quantum dot. We will also review the nanostructures used for enhanced light-matter interaction to boost the IRPD sensitivity. These include nanostructured antireflection coatings, optical antennas, plasmonic, and metamaterials.


Author(s):  
Yoobeen Lee ◽  
Jin Won Jung ◽  
Jin Seok Lee

The reduction of intrinsic defects, including vacancies and grain boundaries, remains one of the greatest challenges to produce high-performance transition metal dichalcogenides (TMDCs) electronic systems. A deeper comprehension of the...


Author(s):  
Alwin Daus ◽  
Sam Vaziri ◽  
Victoria Chen ◽  
Çağıl Köroğlu ◽  
Ryan W. Grady ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
Author(s):  
Anna N. Morozovska ◽  
Eugene A. Eliseev ◽  
Hanna V. Shevliakova ◽  
Yaroslava Yu. Lopatina ◽  
Galina I. Dovbeshko ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Yin ◽  
Peng He ◽  
Ruiqing Cheng ◽  
Feng Wang ◽  
Fengmei Wang ◽  
...  

Abstract Defects play a crucial role in determining electric transport properties of two-dimensional transition metal dichalcogenides. In particular, defect-induced deep traps have been demonstrated to possess the ability to capture carriers. However, due to their poor stability and controllability, most studies focus on eliminating this trap effect, and little consideration was devoted to the applications of their inherent capabilities on electronics. Here, we report the realization of robust trap effect, which can capture carriers and store them steadily, in two-dimensional MoS2xSe2(1-x) via synergistic effect of sulphur vacancies and isoelectronic selenium atoms. As a result, infrared detection with very high photoresponsivity (2.4 × 105 A W−1) and photoswitching ratio (~108), as well as nonvolatile infrared memory with high program/erase ratio (~108) and fast switching time, are achieved just based on an individual flake. This demonstration of defect engineering opens up an avenue for achieving high-performance infrared detector and memory.


RSC Advances ◽  
2017 ◽  
Vol 7 (20) ◽  
pp. 11987-11997 ◽  
Author(s):  
De-Sheng Liu ◽  
Jiang Wu ◽  
Yanan Wang ◽  
Haining Ji ◽  
Lei Gao ◽  
...  

Transition metal dichalcogenides (TMDs) with a unique sandwich structure have attracted tremendous attention in recent years due to their distinctive electrical and optical properties.


2017 ◽  
Vol 5 (29) ◽  
pp. 14950-14968 ◽  
Author(s):  
Gi Woong Shim ◽  
Woonggi Hong ◽  
Sang Yoon Yang ◽  
Sung-Yool Choi

This review provides insights for the design of synthetic schemes and catalytic systems of CVD-grown functional TMDs for high performance HER applications.


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 463 ◽  
Author(s):  
Lei Yang ◽  
Chenggen Xie ◽  
Juncheng Jin ◽  
Rai Ali ◽  
Chao Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document