scholarly journals Fabrication, mechanical properties and failure mechanism of random and aligned nanofiber membrane with different parameters

2019 ◽  
Vol 8 (1) ◽  
pp. 218-226 ◽  
Author(s):  
Su-dan Liu ◽  
Dian-sen Li ◽  
Ying Yang ◽  
Lei Jiang

Abstract Polyacrylonitrile (PAN) nanofiber membranes with different concentrations, rotary speeds and four kinds of aligned with fiber orientation of 0∘, 0∘/90∘, 0∘/90∘/+45∘ and 0∘/90∘/+45∘/−45∘ were prepared via electrospinning technique. The nanofiber membranes were morphologically characterized and mechanically tested. The results showed that nanofibers have uniform structure without any beads when the concentration increased 12wt%. The tensile strength and modulus of PAN nanofiber membranes increase with increasing the concentration. The orientation of nanofibers increases significantly with increasing rotary speed and fabricated nanofibers membrane has best orientation and tensile properties at 2500rpm. Moreover, the tensile properties can be affected greatly by the fiber structure and these decrease significantly with increasing the fiber orientation angle. The results also show that the nanofiber membranes exhibit obvious ductile fracture characteristics. Moreover, shear characteristics become more evident with increasing the concentration, and the failure mode changes from shear feature to flush fracture with increasing the rotary speed. In addition, the failure patterns vary with fiber structure and the main damage is in the form of interlayer delaminating, interface debonding, fibers tearing and breakage of the nanofibers.

2011 ◽  
Vol 675-677 ◽  
pp. 345-348
Author(s):  
Bao Sheng Ren ◽  
Junji Noda ◽  
Koichi Goda

This paper describes an effect of fluctuation in fiber orientation on the tensile properties of sliver-based green composites. The composites were reinforced with slivers of high-strength natural fibers extracted from plants named curaua. Then a surface optical micrograph of the composites with the fiber fluctuation was obtained. The micrograph was divided into many fine segments, and the fiber orientation angle in each segment was measured. Results show that the tensile strength depends on autocorrelation coefficients expressing the degree of fluctuation in fiber orientation, as well as the fiber orientation angles. However, the Young’s modulus was dependent only on the angles, rather than on autocorrelation coefficients. In addition, a statistical concept was applied to an orthotropic analysis for prediction of the Young’s modulus. The predicted Young’s moduli showed better agreement with the experimental results.


2014 ◽  
Vol 709 ◽  
pp. 144-147
Author(s):  
Ying Tao Chen ◽  
Song Xiang ◽  
Wei Ping Zhao

Optimization of fiber orientation angle is studied to minimize the deflection of the laminated composite plates by the genetic algorithm. The objective function of optimization problem is the minimum deflection of laminated composite plates under the external load; optimization parameters are fiber orientation angle of laminated composite plates. The results for the optimal fiber orientation angle and the minimum deflection of the 4-layer plates are presented to demonstrate the validity of present method.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 963
Author(s):  
Ai Hsin ◽  
Su-Chun How ◽  
Steven S.-S. Wang ◽  
Chien Wei Ooi ◽  
Chen-Yaw Chiu ◽  
...  

The polyacrylonitrile (PAN) nanofiber membrane was prepared by the electrospinning technique. The nitrile group on the PAN nanofiber surface was oxidized to carboxyl group by alkaline hydrolysis. The carboxylic group on the membrane surface was then converted to dye affinity membrane through reaction with ethylenediamine (EDA) and Cibacron Blue F3GA, sequentially. The adsorption characteristics of lysozyme onto the dye ligand affinity nanofiber membrane (namely P-EDA-Dye) were investigated under various conditions (e.g., adsorption pH, EDA coupling concentration, lysozyme concentration, ionic strength, and temperature). Optimum experimental parameters were determined to be pH 7.5, a coupling concentration of EDA 40 μmol/mL, and an immobilization density of dye 267.19 mg/g membrane. To understand the mechanism of adsorption and possible rate controlling steps, a pseudo first-order, a pseudo second-order, and the Elovich models were first used to describe the experimental kinetic data. Equilibrium isotherms for the adsorption of lysozyme onto P-EDA-Dye nanofiber membrane were determined experimentally in this work. Our kinetic analysis on the adsorption of lysozyme onto P-EDA-Dye nanofiber membranes revealed that the pseudo second-order rate equation was favorable. The experimental data were satisfactorily fitted by the Langmuir isotherm model, and the thermodynamic parameters including the free energy change, enthalpy change, and entropy change of adsorption were also determined accordingly. Our results indicated that the free energy change had a negative value, suggesting that the adsorption process occurred spontaneously. Moreover, after five cycles of reuse, P-EDA-Dye nanofiber membranes still showed promising efficiency of lysozyme adsorption.


Author(s):  
Pham Dinh Nguyen ◽  
Quang-Viet Vu ◽  
George Papazafeiropoulos ◽  
Hoang Thi Thiem ◽  
Pham Minh Vuong ◽  
...  

This paper proposes an optimization procedure for maximization of the biaxial buckling load of laminated composite plates using the gradient-based interior-point optimization algorithm. The fiber orientation angle and the thickness of each lamina are considered as continuous design variables of the problem. The effect of the number of layers, fiber orientation angles, thickness and length to thickness ratios on the buckling load of the laminated composite plates under biaxial compression is investigated. The effectiveness of the optimization procedure in this study is compared with previous works.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Chao-Tsai Huang ◽  
Xuan-Wei Chen ◽  
Wei-Wen Fu

In recent years, due to the rapid development of industrial lightweight technology, composite materials based on fiber reinforced plastics (FRP) have been widely used in the industry. However, the environmental impact of the FRPs is higher each year. To overcome this impact, co-injection molding could be one of the good solutions. But how to make the suitable control on the skin/core ratio and how to manage the glass fiber orientation features are still significant challenges. In this study, we have applied both computer-aided engineering (CAE) simulation and experimental methods to investigate the fiber feature in a co-injection system. Specifically, the fiber orientation distributions and their influence on the tensile properties for the single-shot and co-injection molding have been discovered. Results show that based on the 60:40 of skin/core ratio and same materials, the tensile properties of the co-injection system, including tensile stress and modulus, are a little weaker than that of the single-shot system. This is due to the overall fiber orientation tensor at flow direction (A11) of the co-injection system being lower than that of the single-shot system. Moreover, to discover and verify the influence of the fiber orientation features, the fiber orientation distributions (FOD) of both the co-injection and single-shot systems have been observed using micro-computerized tomography (μ-CT) technology to scan the internal structures. The scanned images were further utilizing Avizo software to perform image analyses to rebuild the fiber structure. Specifically, the fiber orientation tensor at flow direction (A11) of the co-injection system is about 89% of that of the single-shot system in the testing conditions. This is because the co-injection part has lower tensile properties. Furthermore, the difference of the fiber orientation tensor at flow direction (A11) between the co-injection and the single-shot systems is further verified based on the fiber morphology of the μ-CT scanned image. The observed result is consistent with that of the FOD estimation using μ-CT scan plus image analysis.


2006 ◽  
Vol 324-325 ◽  
pp. 415-418
Author(s):  
Jin Woo Kim ◽  
Dong Gi Lee

While mold fiber reinforced composite material to problem of occasion that high temperature compression molding, flow length in mold is overlong or when flow meets with resistance in side of mold, fiber orientation happens and big change occurs in strength or quality. Thus, in compression molding that use fiber reinforced composite material, orientation state of fiber in moldings is the most basic element that quotes various properties of matter values. Therefore, to clear orientation state of fiber establishing measurement of fiber orientation angle distribution is very important while give correction of molding condition decision, mechanical quality of moldings and guide about material design. In the study, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine the accuracy of intersection counting method. The fiber orientation function measured by intersection counting method using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the scanning line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.


1998 ◽  
Vol 7 (4) ◽  
pp. 096369359800700 ◽  
Author(s):  
VK Ganesh ◽  
S Ramakrishna ◽  
HJ Leck

A method of fabricating fiber-reinforced composite based functionally gradient material is described in this paper. The material has continuously varying mechanical properties along the length. The continuous variation of the mechanical properties is achieved by continuously varying the fiber orientation using the braiding process. The test results indicate an elastic modulus increase by about 42% from the largest braid angle to the smallest braid angle for the material system and the orientation angle considered in the present study.


Sign in / Sign up

Export Citation Format

Share Document