scholarly journals Three-dimensional metallic carbon allotropes with superhardness

2021 ◽  
Vol 10 (1) ◽  
pp. 1266-1276
Author(s):  
Qingyang Fan ◽  
Heng Liu ◽  
Li Jiang ◽  
Wei Zhang ◽  
Yanxing Song ◽  
...  

Abstract Three novel three-dimensional orthorhombic carbon phases are proposed based on first-principles calculations in this work. These phases possess dynamic stability and mechanical stability and are theoretically more favorable in energy compared to most other carbon allotropes. The hardness levels of oP-C16, oP-C20, and oP-C24 are 47.5, 49.6, and 55.3 GPa, respectively, which are greater than those of T10, T18, and O12 carbon. In addition, although oP-C16, oP-C20, and oP-C24 are metals, their ideal shear strengths are also greater than those of common metals such as Cu, Fe, and Al. Due to p y electrons crossing the Fermi level, oP-C16, oP-C20, and oP-C24 show metallicity, and their charge densities of the band decomposition suggest that all the conductive directions of oP-C16, oP-C20, and oP-C24 are exhibited along the a- and b-axis, similar to C5.

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1445
Author(s):  
Tahani A. Alrebdi ◽  
Mohammed Benali Kanoun ◽  
Souraya Goumri-Said

We investigated structure optimization, mechanical stability, electronic and bonding properties of the nanolaminate compounds Ti2PbC, Zr2PbC, and Hf2PbC using the first-principles calculations. These structures display nanolaminated edifices where MC layers are interleaved with Pb. The calculation of formation energies, elastic moduli and phonons reveal that all MAX phase systems are exothermic, and are intrinsically and dynamically stable at zero and under pressure. The mechanical and thermal properties are reported with fundamental insights. Results of bulk modulus and shear modulus show that the investigated compounds display a remarkable hardness. The elastic constants C11 and C33 rise more quickly with an increase in pressure than that of other elastic constants. Electronic and bonding properties are investigated through the calculation of electronic band structure, density of states, and charge densities.


2020 ◽  
Vol 7 (12) ◽  
pp. 200723
Author(s):  
Hai Duong Pham ◽  
Wu-Pei Su ◽  
Thi Dieu Hien Nguyen ◽  
Ngoc Thanh Thuy Tran ◽  
Ming-Fa Lin

The essential properties of monolayer silicene greatly enriched by boron substitutions are thoroughly explored through first-principles calculations. Delicate analyses are conducted on the highly non-uniform Moire superlattices, atom-dominated band structures, charge density distributions and atom- and orbital-decomposed van Hove singularities. The hybridized 2 p z –3 p z and [2s, 2 p x , 2 p y ]–[3s, 3 p x , 3 p y ] bondings, with orthogonal relations, are obtained from the developed theoretical framework. The red-shifted Fermi level and the modified Dirac cones/ π bands/ σ bands are clearly identified under various concentrations and configurations of boron-guest atoms. Our results demonstrate that the charge transfer leads to the non-uniform chemical environment that creates diverse electronic properties.


2018 ◽  
Vol 6 (45) ◽  
pp. 22721-22730 ◽  
Author(s):  
Kazuaki Toyoura ◽  
Weijie Meng ◽  
Donglin Han ◽  
Tetsuya Uda

The atomic-scale picture of proton conduction in highly doped barium zirconate has theoretically been clarified using first-principles calculations.


2020 ◽  
Vol 34 (25) ◽  
pp. 2050220
Author(s):  
Yingying Chen ◽  
Xilong Dou ◽  
Wenjie Zhu ◽  
Gang Jiang ◽  
Aijie Mao

The structures with different compositions of the binary Mg–Y alloys have been predicted by first-principles calculations combined with an unbiased Crystal structure Analysis by Particle Swarm Optimization (CALYPSO) structure searching method. The two already known stoichiometries alloys of Mg1Y1 with Pm-[Formula: see text] symmetry and Mg3Y1 with Fm-[Formula: see text] are confirmed, and a new stoichiometry alloy of Mg1Y3 with [Formula: see text] symmetry is proposed. The dynamical and mechanical stabilities for the three alloys at different pressures are investigated by phonon spectra and mechanical stability criteria, respectively. Subsequently, the bulk modulus, shear modulus, Young’s modulus, the brittleness/ductile behavior, the elastic anisotropy as well as Vickers hardness for the three alloys at 0 GPa are discussed in detail. The results show that the Mg1Y1, Mg3Y1 and Mg1Y3 alloys improve the hardness and stiffness compared with pure Mg, and Mg1Y3 alloy is of the best ductility in the three alloys. Meanwhile, the three alloys exhibit anisotropic. Moreover, the thermodynamic properties, such as Debye temperature, heat capacity at constant volume, entropy and Helmholtz free energy for the three stable alloys, are predicted and discussed.


Nanoscale ◽  
2019 ◽  
Vol 11 (39) ◽  
pp. 18116-18123 ◽  
Author(s):  
David Kipkemoi Sang ◽  
Teng Ding ◽  
Meng Nan Wu ◽  
Yu Li ◽  
Junqin Li ◽  
...  

Side and top views of monolayer 2D-β-Tellurene with difference charge densities (DCD).


2013 ◽  
Vol 477-478 ◽  
pp. 1303-1306
Author(s):  
Qin Xiang Gao

Using the first-principles calculations within the density functional theory (DFT), we have investigated the structure, magnetism and half-metallic stability of Co2FeGa Heusler compound under pressure from 0 to 50GPa. The results revel that the lattice constant is gradually shrank and total magnetic moment in per unit slightly decreased with increasing pressure, respectively. Moreover, with the increase of the pressure, the Fermi level will move towards high-energy orientation. When the pressure reaches at 30GPa the most stable half-metallicity is observed which the Fermi level is located at the middle of the spin-minority gap.


2018 ◽  
Vol 123 (16) ◽  
pp. 161408 ◽  
Author(s):  
J. B. Varley ◽  
V. Lordi ◽  
T. Ogitsu ◽  
A. Deangelis ◽  
K. Horsley ◽  
...  

2013 ◽  
Vol 690-693 ◽  
pp. 1723-1727
Author(s):  
Kai Min Fan ◽  
Li Yang ◽  
Jing Tang ◽  
Qing Qiang Sun ◽  
Xiao Tao Zu

First-principles calculations are performed to investigate the Young’s modulus, bulk modulus, shear modulus and Poisson’s ratio of hexagonal phase ScAx(A=H, He), where x=0, 0.0313, 0.125 and 0.25, represent the ratio of interstitial atoms A (A=H, He) to Sc atoms. The influences of hydrogen concentrations and helium concentrations on elastic modulus and Poisson’s ratio of ScAx(A=H, He) have been studied. The results indicate that hydrogen and helium have different effects on the elastic modulus of hexagonal phase scandium. The change mechanism of the Poisson’s ratio with the variation of the x ranging from 0 to 0.25 has also been studied in hexagonal phase ScAx(A=H, He). In addition, the changes in the charge densities of ScAxdue to the presence of hydrogen and helium have been calculated.


Sign in / Sign up

Export Citation Format

Share Document