scholarly journals Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications

2022 ◽  
Vol 11 (1) ◽  
pp. 372-413
Author(s):  
Mohamed Ibrahim Ahmed Abdel Maksoud ◽  
Mohamed Mohamady Ghobashy ◽  
Ahmad S. Kodous ◽  
Ramy Amer Fahim ◽  
Ahmed I. Osman ◽  
...  

Abstract Magnetic spinel ferrite nanoparticles (SFNPs) attract high scientific attention from researchers due to their broad area for biomedicine applications, comprising cancer magnetic hyperthermia and targeted drug delivery. Uniquely, its excellent performance, namely, tuning size and surface morphology, excellent magnetism, extraordinary magnetically heat induction, promising biocompatibility, and specific targeting capacity, is essential for their effective utilization in clinical diagnosis and therapeutics of diseases. This review emphasizes the anticancer properties of nanoparticles of spinel ferrites with extra focus on the most recent literature. A critical review is provided on the latest applications of SFNPs in cancer therapy. Based on the results obtained from this review, SFNPs have the indefinite ability in cancer therapy through two mechanisms: (1) hyperthermia, where SFNPs, used as a hyperthermia mediator, elevated the tumor cells heat post-exposure to an external magnetic field and radiosensitizer during cancer radiotherapy; and (2) targeted drug delivery of cytotoxic drugs in tumor treatment. SFNPs induced apoptosis and cell death of cancer cells and prevented cancer cell proliferation.

2020 ◽  
Vol 20 (4) ◽  
pp. 271-287 ◽  
Author(s):  
Kuldeep Rajpoot

Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.


Author(s):  
Mahadevappa Y. Kariduraganavar ◽  
Geetha B. Heggannavar ◽  
Sandra Amado ◽  
Geoffrey R. Mitchell

Author(s):  
D.L. Stirland ◽  
J.W. Nichols ◽  
T.A. Denison ◽  
Y.H. Bae

2020 ◽  
Vol Volume 15 ◽  
pp. 3333-3346 ◽  
Author(s):  
Srinivasan Ayyanaar ◽  
Chandrasekar Balachandran ◽  
Rangaswamy Chinnabba Bhaskar ◽  
Mookkandi Palsamy Kesavan ◽  
Shin Aoki ◽  
...  

2019 ◽  
Vol 55 (100) ◽  
pp. 15101-15104 ◽  
Author(s):  
Xiaoting Ji ◽  
Haoyuan Lv ◽  
Xinxin Sun ◽  
Caifeng Ding

Bifunctional composite nanospheres for carcinoembryonic antigen sensing and targeted drug delivery, based on carbon dot loaded silica nanoparticles coated with DNA-cross-linked hydrogels.


Nanomedicine ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 1221-1237
Author(s):  
Touqeer Ahmad ◽  
Rizwana Sarwar ◽  
Ayesha Iqbal ◽  
Uzma Bashir ◽  
Umar Farooq ◽  
...  

The diverse behavior of nanogold in the therapeutic field is related to its unique size and shape. Nanogold offers improvements in modern diagnostic and therapeutic implications, increases disease specificity and targeted drug delivery, and is relatively economical compared with other chemotherapeutic protocols. The diagnosis of cancer and photothermal therapy improve drastically with the implementation of nanotechnology. Different types of nanoparticles, that is, gold silica nanoshells, nanorods and nanospheres of diverse shapes and geometries, are used widely in the photothermal therapy of cancerous cells and nodules. Numerous reviews have been published on the therapeutic applications of gold nanoparticles, but studies on combinatorial applications of nanogold in cancer therapy are limited. This review focuses on the combinatorial cancer therapy using optical properties of nanogold with different shapes and geometries, and their therapeutic applications in cancer diagnosis, photothermal therapy, cancer imaging and targeted drug delivery.


2020 ◽  
Vol 19 (3) ◽  
pp. 323-332 ◽  
Author(s):  
Lin Lin ◽  
Fupeng Huang ◽  
Hao Yan ◽  
Fuqiang Liu ◽  
Weisi Guo

Sign in / Sign up

Export Citation Format

Share Document