scholarly journals Effect of different glyphosate salts on phosphodiesterase and phosphotriesterase activities in soil with reference to ecological importance of soil pollution. A laboratory experiment

2015 ◽  
Vol 26 (2) ◽  
pp. 9-14
Author(s):  
Maciej Płatkowski ◽  
Arkadiusz Telesiński

AbstractThe aim of this study is to determine the effect of the two glyphosate salts: isopropylamine and potassium (contained in preparations Roundup) on the activity of phosphodiesterase and phosphotriesterase in the soil. The experiment was carried out in the laboratory conditions on two soil types: loamy sand (Corg 8.70 g·kg−1, pHKCl 6.39) and sandy loam (Corg 10.90 g·kg−1, pHKCl 6.81). Two glyphosate salts (isopropylamine and potassium) in dosage of 0, 1 and 100 mg·kg−1 were applicate into soils. Phosphodiesterase and phospotriesterase activities in soils were determined spectrophotometrically on days 1, 7, 14, 28, 56 and 112. The obtained results were converted with respect to the enzyme activities in the control soil (assuming it to be 100%) and given as percent of inhibition. The results were shown as environmental danger zones graphs. Obtained results showed that glyphosate salts application has primarily resulted in inhibition of phosphodiesterase activity, and stimulation of phosphotriesterase activity in soils. Soil type and kind of glyphosate salt affect the interaction of herbicide with phosphodiesterase and phosphotriesterase activities. The observed changes in the phosphodiesterase and phosphotriesterase activities caused by the addition of both glyphosate salts were located on environmental danger zones graphs in the range of negligible or acceptable values, which may indicate a low impact of herbicide on measured enzymes.

1969 ◽  
Vol 9 (39) ◽  
pp. 428 ◽  
Author(s):  
VF McClelland

The production and persistence of nine cultivars of lucerne were studied at the Mallee Research Station, Walpeup, Victoria, over three seasons. Hunter River, Siro Peruvian, and African lucerne were similar in yield, but Siro Peruvian was less persistent. The superior yield of these three cultivars over two accessions of Flandria, Du Puits, and Socheville was largely due to their greater winter production. Two lines of Canadian creeping-rooted lucerne were found to be entirely unsuited to this district. Hunter River and Siro Peruvian lucerne were also compared on a sand and a sandy loam soil at Walpeup. The relative production of the two cultivars was the same on the two soil types but the effect of soil type was marked. The production and persistence of lucerne grown on the sand was far superior to that on the sandy loam.


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 115-127 ◽  
Author(s):  
Huseyin Onen ◽  
Shahid Farooq ◽  
Hikmet Gunal ◽  
Cumali Ozaslan ◽  
Halil Erdem

Common ragweed is a troublesome allergenic invader and noxious weed of several crops. Despite extensive research to understand the factors affecting its invasion, the role of environmental stresses and soil types on survival and growth is poorly understood. The objective of this study was to determine the effects of drought, salinity, and soil types on survival, growth, and nutrient uptake of ragweed in greenhouse experiments to predict its invasiveness in Turkey. Three separate experiments, with five drought intensities (100, 75, 50, 25, and 12.5% of field capacity [FC]), four levels of salinity (0, 3, 6, and 12 dS m−1), and five soil types varying in sand, silt, and clay content were performed. Severe drought and salinity levels reduced seedling survival, while soil type had no effect. Increasing drought and salinity negatively affected growth and nutrient uptake; the poorest growth was observed under severe drought intensity. Ragweed exhibited intensive tolerance to drought, even severe levels, while it tolerated salinity up to 6 dS m−1 for seedling survival. Growth was negatively affected above 3 dS m−1. The highest and lowest nutrient accumulations were recorded under moderate and extreme drought intensities, respectively. Similarly, the highest Na accumulation was observed under extreme saline conditions, whereas the highest P uptake and K/Na ratio were achieved under nonsaline conditions (0 dS m−1). Variation of soil texture had no effect on growth and nutrient uptake. The highest Ca, Mg, and Na accumulations were recorded on clay soil, while higher P accrued on sandy-loam soil. Increased tolerance of ragweed to severe drought and moderate salinity and its nonselective nature for soil type indicate that semiarid and partially arid regions in Turkey have plenty of vacant niches for ragweed invasion.


Author(s):  
Magdalena Banach-Szott ◽  
Bozena Debska ◽  
Erika Tobiasova

AbstractMany studies report organic carbon stabilization by clay minerals, but the effects of land use and soil type on the properties of humic acids (HAs) are missing. The aim of the paper is to determine the effects of land use and soil types on the characteristics of HAs, which have a considerable influence on organic matter quality. It was hypothesised that the effect of the land use on HAs properties depends on the particular size distribution. The research was performed in three ecosystems: agricultural, forest, and meadow, located in Slovakia. From each of them, the samples of 4 soil types were taken: Chernozem, Luvisol, Planosol, and Cambisol. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS range, and hydrophilic and hydrophobic properties, and the infrared spectra were produced. The research results have shown that the properties of HAs can be modified by the land use and the scope and that the direction of changes depends on the soil type. The HAs of Chernozem and Luvisol in the agri-ecosystem were identified with a higher “degree of maturity”, as reflected by atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR spectra, as compared with the HAs of the meadow and forest ecosystem. However, as for the HAs of Cambisol, a higher “degree of maturity” was demonstrated for the meadow ecosystem, as compared with the HAs of the agri- and forest ecosystem. The present research has clearly identified that the content of clay is the factor determining the HAs properties. Soils with a higher content of the clay fraction contain HAs with a higher “degree of maturity”.


Author(s):  
Pujia Yu ◽  
Hailiang Xu ◽  
Shiwei Liu ◽  
Xinfeng Zhao ◽  
Qingqing Zhang ◽  
...  

During the past 20 years, great landscape changes took place in the northwest of China. Landscape change resulted in soil type transformations. This paper discusses the changes and fractal of soil types in oasis. In order to do it, the soil type maps of Manasi River Basin in 1987 and 2006 were used. 13 types of soil and 2 types of land-use were classified and analyzed in the study area. Results indicated many variations in characteristics. Firstly, all soil types underwent remarkable changes from 1987 to 2006 in the study area: the identified changed area was about 30% or 6506.33 km2. Secondly, in comparison with 1987, in 2006 2/3 of the area's soil types increased, while 1/3 decreased. Rapid expansion of Aquicambids (415.28 km2), and rapid decrease of Petrocambids (797.05 km2) and Aquisalids (415.93 km2) were the noticeable findings. Furthermore, Haplocambids obtained largest gains from other soil types, while Petrocambids lost largest area to other types. Additionally, the fractal relationship objectively existed between the perimeter and area of soil patches. The fractal dimension of Aquisalids, Petrocalcids and Ustifluvents became higher and their shapes became more complex during this period. The stability index was higher in 2006 which indicated that the spatial structure of soil type was more stable than in 1987. These chaotic and occasional changes were largely caused by human activities and natural conditions. Consequently, environmental managers should pay more attention to soil changes in the arid and semiarid region. Santrauka Per pastaruosius 20 metų šiaurės vakarų Kinijoje įvyko didelių kraštovaizdžio pokyčių, lėmusių ir dirvožemio tipų pakitimus. Remiantis 1987–2006 m. Manasi upės baseino dirvožemio žemėlapiais, aptariami dirvožemio tipų pokyčiai ir fraktalai oazėse. Pasirinktoje teritorijoje išskirta ir analizuota 13 dirvožemio tipų ir dvejopa žemėnauda. Nustatyta daug kintamųjų parametrų. Pirma, tirtõs teritorijos visų tipų dirvožemiai nuo 1987 iki 2006 m. žymiai pakito. Nustatytoji pokyčių zona apima apie 30 % teritorijos, arba 6 506,32 km2. Antra, palyginti su 1987 m., 2006 m. 10 dirvožemio tipų teritorija padidėjo, o 5 tipų sumažėjo. Sparčiai padidėjo Aquicambids (415,28 km2), sparčiai sumažėjo Petrocambids (797,05 km2) ir Aquisalids (415,93 km2), pokyčiai buvo žymūs. Iš visų kitų pakitusių dirvožemių tipų Haplocambids plotai padidėjo daugiausia, o labiausiai, palyginti su kitais, sumažėjo Petrocambids plotai. Be to, pastebėta, kad tarp dirvožemio teritorijos plotų ir perimetrų objektyviai egzistuoja fraktalinės sąsajos. Fraktalinės dimensijos Aquisalids, Petrocalcids ir Ustifluvents per minėtą laikotarpį padidėjo, o jų formos tapo sudėtingesnės. Stabilumo indeksas 2006 m. buvo didesnis. Tai rodė, kad erdvinė dirvožemio struktūra mažai pakito, tapo stabilesnė, palyginti nei buvo 1987 m. Šiuos atsitiktinius pokyčius iš esmės lėmė žmogaus veikla ir gamtinės sąlygos. Prieita prie išvados, kad sausojo ar pusiau sauso klimato regionuose kraštotvarkos vykdytojai dirvožemio pokyčiams turėtų skirti daugiau dėmesio.


2013 ◽  
Vol 33 (5) ◽  
pp. 965-975 ◽  
Author(s):  
Aloisio Bianchini ◽  
Pedro H. de M. Borges

The destruction of the cotton crop residues (cotton stalks) is a mandatory procedure in Brazil for prophylactic issues, but is a subject unexplored by the research and there are few studies that deal with this issue. However, this is not encouraged in recent decades, studies aimed at developing and evaluating equipment for this purpose. The present study had the objective to evaluate six methods for mechanical destruction of cotton crop residues. Each method was defined based on the principle of operation of the active parts of the equipment, which were tested in medium texture soil and in a clayey one. The variables used to evaluate the efficiency of the equipment were the regrowth rate, the theoretical field capacity and energy demand. The equipment with convergent concave disks (DCC) and flat cutters discs from manufacturer A (CPS-a) showed the best results in cotton stalks destruction in both soil types. The harrow disc (GPD) was efficient only in clay soil. It was concluded that the equipment with convergent concave disks, among those tested, was the most efficient to destroy cotton stalks, regardless of soil type, and that the harrow disc was not included among the best performers.


1969 ◽  
Vol 30 (3) ◽  
pp. 127-137
Author(s):  
Luis A. Gómez ◽  
José Lería Esmoris ◽  
B. G. Capó

The results obtained in two coffee fertilizer tests performed with the Puerto Rican variety of Coffea arabica on "Catalina Clay" are presented, statistically analyzed, and discussed. Nitrogen and phosphoric acid applications seem to be of greater importance as regards market-coffee production of the above variety in the soil type used, than are the applications of potash, which had no significant effects on the yields. These results are in sharp contrast with the results obtained by McClelland, who found potash applications to be essential and phosphoric acid applications to be not essential for maximum coffee production in Puerto Rico. It should be noted that McClelland's experiments were carried out on other soil types, which were probably not in condition to provide the coffee trees with their potash requirements.


2016 ◽  
Author(s):  
Matheus Henrique Nunes ◽  
Matthew P. Davey ◽  
David Anthony Coomes

Abstract. Understanding the causes of variation in plant functional traits is a central issue in ecology, particularly in the context of global change. Analyses of the drivers of traits variation based on thousands of tree species are starting to unravel patterns of variation at the global scale, but these studies tend to focus on interspecific variation, and the contribution of intraspecific changes remains less well understood. Hyperspectroscopy is a recently developed technology for estimating the traits of fresh leaves. Few studies have evaluated its potential for assessing inter- and intra-specific trait variability in community ecology. Working with 24 leaf traits for European tree species on contrasting soil types, found growing on deep alluvial soils and nearby shallow chalk soils, we ask: (i) What contribution do soil type and species identity make to trait variation? (ii) When traits are clustered into three functional groups (light capture and growth, leaf structure and defence, as well as rock-derived nutrients), are some groups more affected by soil than others? (iii) What traits can be estimated precisely using field spectroscopy? (iv) Can leaf spectra be used to detect inter-soil as well as inter-specific variation in traits? The contribution of species and soil-type effects to variation in traits were evaluated using statistical analyses. Foliar traits were predicted from spectral reflectance using partial least square regression, and so inter- and intra-specific variation. Most leaf traits varied greatly among species. The effects of soil type were generally weak by comparison. Macronutrient concentrations were greater on alluvial than chalk soils while micronutrient concentration showed the opposite trend. However, structural traits, as well as most pigments and phenolic concentrations varied little with soil type. Field spectroscopy provided accurate estimates of species-level trait values, but was less effective at detecting subtle variation of rock-derived nutrients between soil types. Field spectroscopy was a powerful technique for estimating cross-species variation in foliar traits and Si predictions using spectroscopy appear to be promising. However, it was unable to detect subtle within-species variation of traits associated with soil type.


Author(s):  
Songyan Li ◽  
Meng Li ◽  
Guoxi Wang ◽  
Xiaolei Sun ◽  
Beidou Xi ◽  
...  

Abstract Background Exploration of composition and chemical characteristics of soil dissolved organic matter (DOM) is significant to understand its biogeochemical role in terrestrial ecosystems. A total of 43 cropped and 16 natural soils (0–20 cm) under four soil types (cinnamon, chernozem, red and paddy soils) across China were collected to investigate the spectral characteristics of DOM using UV–Vis and 3D-EEM spectroscopy. Results The chernozem soils exhibited the highest aromaticity and humification degree among the four soil types. Ranges of biological index (BIX, 0.53–1.17) and fluorescence index (FI, 1.55–2.10) were found in the investigated DOM, showing joint contribution from allochthonous and autochthonous sources. Higher BIX and FI in the DOM of the paddy and red soils indicated a greater reliance on autochthonous sources for these two soil types. The cropped soils showed no significant differences in chemical characteristics and sources from the natural soils for the cinnamon, chernozem and red soils. UVA (16.2–47.9%) and UVC fulvic-like substances (15.4–40.5%) were the prevailing DOM components, which were highest in the chernozem soils. Additionally, the cropped soils had a higher proportion of humic-like substances than the natural soils in the DOM. Conclusions Both soil type and land-use strongly affected the chemical characteristics of soil DOM, but only soil type had an impact on the DOM composition for the collected soils. These findings may contribute to the prediction of the biochemical behavior of soil DOM under different soil types and land-uses in terrestrial ecosystems.


Sign in / Sign up

Export Citation Format

Share Document