scholarly journals Evaluation of cotton stalks destroyers

2013 ◽  
Vol 33 (5) ◽  
pp. 965-975 ◽  
Author(s):  
Aloisio Bianchini ◽  
Pedro H. de M. Borges

The destruction of the cotton crop residues (cotton stalks) is a mandatory procedure in Brazil for prophylactic issues, but is a subject unexplored by the research and there are few studies that deal with this issue. However, this is not encouraged in recent decades, studies aimed at developing and evaluating equipment for this purpose. The present study had the objective to evaluate six methods for mechanical destruction of cotton crop residues. Each method was defined based on the principle of operation of the active parts of the equipment, which were tested in medium texture soil and in a clayey one. The variables used to evaluate the efficiency of the equipment were the regrowth rate, the theoretical field capacity and energy demand. The equipment with convergent concave disks (DCC) and flat cutters discs from manufacturer A (CPS-a) showed the best results in cotton stalks destruction in both soil types. The harrow disc (GPD) was efficient only in clay soil. It was concluded that the equipment with convergent concave disks, among those tested, was the most efficient to destroy cotton stalks, regardless of soil type, and that the harrow disc was not included among the best performers.

2001 ◽  
Vol 52 (1) ◽  
pp. 45 ◽  
Author(s):  
S. Asseng ◽  
I. R. P. Fillery ◽  
F. X. Dunin ◽  
B. A. Keating ◽  
H. Meinke

High rates of deep drainage (water loss below the root-zone) in Western Australia are contributing to groundwater recharge and secondary salinity. However, quantifying potential drainage through measurements is hampered by the high degree of complexity of these systems as a result of diverse soil types, a range of crops, different rainfall regions, and in particular the inherent season-to-season variability. Simulation models can provide the appropriate means to extrapolate across time and space. The Agricultural Production Systems Simulator (APSIM) was used to analyse deep drainage under wheat crops in the Mediterranean climate of the central Western Australian wheatbelt. In addition to rigorous model testing elsewhere, comparisons between simulated and observed soil water loss, evapotranspiration, and deep drainage for different soil types and seasons confirmed the reasonable performance of the APSIM model. The APSIM model was run with historical weather records (70–90 years) across 2 transects from the coast (high rainfall zone) to the eastern edge of the wheatbelt (low rainfall zone). Soils were classified as 5 major types: deep sand, deep loamy sand, acid loamy sand, shallow duplex (waterlogging), and clay soil (non-waterlogging). Simulations were carried out on these soil types with historical weather records, assuming current crop management and cultivars. Soil water profiles were reset each year to the lower limit of plant-available water, assuming maximum water use in the previous crop. Results stressed the high degree of seasonal variability of deep drainage ranging from 0 to 386 mm at Moora in the high rainfall region (461 mm/year average rainfall), from 0 to 296 mm at Wongan Hills in the medium rainfall region (386 mm/year average rainfall), and from 0 to 234 mm at Merredin in the low rainfall region (310 mm/year average rainfall). The largest amounts of drainage occurred in soils with lowest extractable water-holding capacities. Estimates of annual drainage varied with soil type and location. For example, average (s.d.) annual drainage at Moora, Wongan Hills, and Merredin was 134 (73), 90 (61), and 36 (43) mm on a sand, and 57 (64), 26 (43), and 4 (18) mm on a clay soil, respectively. These values are an order of magnitude higher than drainage reported elsewhere under native vegetation. When not resetting the soil each year, carry-over of water left behind in the soil reduced the water storage capacity in the subsequent year, increasing long-term average deep drainage, depending on soil type and rainfall region. The analyses revealed the extent of the excess water problem that currently threatens the sustainability of the wheat-based farming systems in Western Australia.


2006 ◽  
Vol 84 (6) ◽  
pp. 832-838 ◽  
Author(s):  
D.T. Booth

This study examined the effect of soil type on burrowing behaviour and cocoon formation during aestivation in the green-striped burrowing frog, Cyclorana alboguttata (Günther, 1867). Given a choice, frogs always chose to burrow in wet sand in preference to wet clay. Frogs buried themselves faster and dug deeper burrows in sandy soil. However, under my laboratory conditions, there was little difference in the pattern of soil drying between the two soil types. Frogs in both sand and clay soil experienced hydrating conditions for the first 3 months and dehydrating conditions for the last 3 months of the 6-month aestivation period, and cocoons were not formed until after 3 months of aestivation. After 6 months, there were more layers in the cocoons of frogs aestivating in sand than those aestivating in clay. Frogs were able to absorb water from sandy soil with water potentials greater than –400 kPa, but lost water when placed on sand with a water potential of –1000 kPa.


2000 ◽  
Vol 53 ◽  
pp. 253-257
Author(s):  
T.K. James ◽  
A. Rahman

The viability of ragwort (Senecio jacobaea L) seed buried for several years at 0 2 4 6 and 19 21 cm depths was evaluated in four different soil types Seed samples in nylon mesh bags were removed after 1 2 3 5 11 and 16 years burial and their viability determined by germination After 16 years no viable seed was found in the clay soil In the silt loam and peat soils 1 3 viable seed remained while in the sandy soil up to 13 remained viable In the surface 0 2 cm layer of soil it took from 109 to 146 years for the percentage of viable seed to fall to 1 of the original viable seed depending on soil type At the 4 6 and 19 21 cm depths the corresponding times were 128 165 years and 130 180 years


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 115-127 ◽  
Author(s):  
Huseyin Onen ◽  
Shahid Farooq ◽  
Hikmet Gunal ◽  
Cumali Ozaslan ◽  
Halil Erdem

Common ragweed is a troublesome allergenic invader and noxious weed of several crops. Despite extensive research to understand the factors affecting its invasion, the role of environmental stresses and soil types on survival and growth is poorly understood. The objective of this study was to determine the effects of drought, salinity, and soil types on survival, growth, and nutrient uptake of ragweed in greenhouse experiments to predict its invasiveness in Turkey. Three separate experiments, with five drought intensities (100, 75, 50, 25, and 12.5% of field capacity [FC]), four levels of salinity (0, 3, 6, and 12 dS m−1), and five soil types varying in sand, silt, and clay content were performed. Severe drought and salinity levels reduced seedling survival, while soil type had no effect. Increasing drought and salinity negatively affected growth and nutrient uptake; the poorest growth was observed under severe drought intensity. Ragweed exhibited intensive tolerance to drought, even severe levels, while it tolerated salinity up to 6 dS m−1 for seedling survival. Growth was negatively affected above 3 dS m−1. The highest and lowest nutrient accumulations were recorded under moderate and extreme drought intensities, respectively. Similarly, the highest Na accumulation was observed under extreme saline conditions, whereas the highest P uptake and K/Na ratio were achieved under nonsaline conditions (0 dS m−1). Variation of soil texture had no effect on growth and nutrient uptake. The highest Ca, Mg, and Na accumulations were recorded on clay soil, while higher P accrued on sandy-loam soil. Increased tolerance of ragweed to severe drought and moderate salinity and its nonselective nature for soil type indicate that semiarid and partially arid regions in Turkey have plenty of vacant niches for ragweed invasion.


1955 ◽  
Vol 45 (4) ◽  
pp. 401-410 ◽  
Author(s):  
H. C. Pereira

A comparison of methods of measuring the structural condition of cultivated surface soil was made for two important East African soil types.The soil samples were drawn from two field experiments: (i) a tillage trial in coffee on a porous red lateritic clay soil of recent volcanic origin; (ii) a rotation trial for cotton, on a red sandy lateritic loam of granitic origin.Of the measurements on soil cores, total porespace and field capacity (⅓ atmosphere) showed little change, while percolation rates, free-draining pore-space and a new rainfall acceptance test all reflected the observed field behaviour of the soils, and showed fairly close and highly significant correlation. Field sieving of dry clods gave highly significant differences in the lateritic clay, the stronger clods indicating the poorer soil condition. Drysieving for ½ mm. crumb was ineffective, as was wet-sieving after wetting under vacuum. Wetting by immersion gave some differences between treatments, but higher variability and no significant correlation with free-draining pore-space. Wetting by rainfall impact on dry crumbs gave the best wet-sieving tests on the clay soil. Different sieving techniques gave inconsistent results on the sandy soil. Crumb structure measurements are not efficient indications of structural conditions on these soil types, which are of wide occurrence in tropical countries.


Author(s):  
Magdalena Banach-Szott ◽  
Bozena Debska ◽  
Erika Tobiasova

AbstractMany studies report organic carbon stabilization by clay minerals, but the effects of land use and soil type on the properties of humic acids (HAs) are missing. The aim of the paper is to determine the effects of land use and soil types on the characteristics of HAs, which have a considerable influence on organic matter quality. It was hypothesised that the effect of the land use on HAs properties depends on the particular size distribution. The research was performed in three ecosystems: agricultural, forest, and meadow, located in Slovakia. From each of them, the samples of 4 soil types were taken: Chernozem, Luvisol, Planosol, and Cambisol. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS range, and hydrophilic and hydrophobic properties, and the infrared spectra were produced. The research results have shown that the properties of HAs can be modified by the land use and the scope and that the direction of changes depends on the soil type. The HAs of Chernozem and Luvisol in the agri-ecosystem were identified with a higher “degree of maturity”, as reflected by atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR spectra, as compared with the HAs of the meadow and forest ecosystem. However, as for the HAs of Cambisol, a higher “degree of maturity” was demonstrated for the meadow ecosystem, as compared with the HAs of the agri- and forest ecosystem. The present research has clearly identified that the content of clay is the factor determining the HAs properties. Soils with a higher content of the clay fraction contain HAs with a higher “degree of maturity”.


1971 ◽  
Vol 51 (2) ◽  
pp. 235-241 ◽  
Author(s):  
G. S. EMMOND

Soil aggregation was lowest in a fallow-wheat rotation and increased in other fallow-grain rotations with the second, third, and fourth crops after the fallow year. The best aggregation was under continuous wheat. Rotations containing hay crops, particularly those with grass, increased soil aggregation significantly. The influence of tillage treatments on soil aggregation declined with increased depth. Various tillage treatments affected surface soil aggregation, in the following order: green manure crop plowed under > cultivated with trash cover > crop residues plowed under > cultivated with residues burned off = crop residues disced in. Fertilizer (11–48–0) applied to the wheat crop of the various tillage treatments increased soil aggregation except where the crop residues had been removed. The application of barn manure increased soil aggregation.


Author(s):  
Pujia Yu ◽  
Hailiang Xu ◽  
Shiwei Liu ◽  
Xinfeng Zhao ◽  
Qingqing Zhang ◽  
...  

During the past 20 years, great landscape changes took place in the northwest of China. Landscape change resulted in soil type transformations. This paper discusses the changes and fractal of soil types in oasis. In order to do it, the soil type maps of Manasi River Basin in 1987 and 2006 were used. 13 types of soil and 2 types of land-use were classified and analyzed in the study area. Results indicated many variations in characteristics. Firstly, all soil types underwent remarkable changes from 1987 to 2006 in the study area: the identified changed area was about 30% or 6506.33 km2. Secondly, in comparison with 1987, in 2006 2/3 of the area's soil types increased, while 1/3 decreased. Rapid expansion of Aquicambids (415.28 km2), and rapid decrease of Petrocambids (797.05 km2) and Aquisalids (415.93 km2) were the noticeable findings. Furthermore, Haplocambids obtained largest gains from other soil types, while Petrocambids lost largest area to other types. Additionally, the fractal relationship objectively existed between the perimeter and area of soil patches. The fractal dimension of Aquisalids, Petrocalcids and Ustifluvents became higher and their shapes became more complex during this period. The stability index was higher in 2006 which indicated that the spatial structure of soil type was more stable than in 1987. These chaotic and occasional changes were largely caused by human activities and natural conditions. Consequently, environmental managers should pay more attention to soil changes in the arid and semiarid region. Santrauka Per pastaruosius 20 metų šiaurės vakarų Kinijoje įvyko didelių kraštovaizdžio pokyčių, lėmusių ir dirvožemio tipų pakitimus. Remiantis 1987–2006 m. Manasi upės baseino dirvožemio žemėlapiais, aptariami dirvožemio tipų pokyčiai ir fraktalai oazėse. Pasirinktoje teritorijoje išskirta ir analizuota 13 dirvožemio tipų ir dvejopa žemėnauda. Nustatyta daug kintamųjų parametrų. Pirma, tirtõs teritorijos visų tipų dirvožemiai nuo 1987 iki 2006 m. žymiai pakito. Nustatytoji pokyčių zona apima apie 30 % teritorijos, arba 6 506,32 km2. Antra, palyginti su 1987 m., 2006 m. 10 dirvožemio tipų teritorija padidėjo, o 5 tipų sumažėjo. Sparčiai padidėjo Aquicambids (415,28 km2), sparčiai sumažėjo Petrocambids (797,05 km2) ir Aquisalids (415,93 km2), pokyčiai buvo žymūs. Iš visų kitų pakitusių dirvožemių tipų Haplocambids plotai padidėjo daugiausia, o labiausiai, palyginti su kitais, sumažėjo Petrocambids plotai. Be to, pastebėta, kad tarp dirvožemio teritorijos plotų ir perimetrų objektyviai egzistuoja fraktalinės sąsajos. Fraktalinės dimensijos Aquisalids, Petrocalcids ir Ustifluvents per minėtą laikotarpį padidėjo, o jų formos tapo sudėtingesnės. Stabilumo indeksas 2006 m. buvo didesnis. Tai rodė, kad erdvinė dirvožemio struktūra mažai pakito, tapo stabilesnė, palyginti nei buvo 1987 m. Šiuos atsitiktinius pokyčius iš esmės lėmė žmogaus veikla ir gamtinės sąlygos. Prieita prie išvados, kad sausojo ar pusiau sauso klimato regionuose kraštotvarkos vykdytojai dirvožemio pokyčiams turėtų skirti daugiau dėmesio.


1975 ◽  
Vol 26 (4) ◽  
pp. 751 ◽  
Author(s):  
M Statham ◽  
AC Bray

Congenital goitre was first recorded in Tasmanian sheep In 1945. Severe but sporadic outbreaks have since occurred in 1956, 1964 and 1968. The disease seemed to be associated with particular farms and its incidence often differed markedly between ewe flocks on the one farm. A survey indicated that the condition was mainly confined to the Derwent Valley and the northern Midlands. Studies involved a grazing trial near Bothwell, where goitre was endemic, and included supporting animal house tnals and plant growth studies. Soil type was shown to be a major factor in the disease: ewes grazing pasture on a sandy soil produced many more goitrous lambs than ewes grazing pasture on clay soil. Analyses of the two pastures revealed that those on sandy so11 contained less iodine than those on clay soil but neither contained the minimum level necessary to prevent goitre. Observations revealed that outbreaks of the disease followed wet autumns with subsequent lush pasture during pregnancy. This correlation could be explained if pasture grown under moist conditions contained less iodine than pasture grown under moisture stress. However, experiments with the two main pasture species (perennial ryegrass and subterranean clover) showed that plant iodine levels were not affected by the water supply. Two goitrogenic agents, nitrate and thiocyanate, were present in the pastures, but they were not considered to be Important in the aetiology of the disease. Similarly, the drinking water was found to be unimportant, even though the two sources available contained widely different amounts of iodine. Apparently, between-year variation in the incidence of goitre and the effect of soil type can best be explained by a varying iodine intake dependent on soil ingestion which varies with pasture availability. This hypothesis is discussed in the light of the results.


Sign in / Sign up

Export Citation Format

Share Document