scholarly journals Numerical analysis on the dynamic response of a plate-and-frame membrane humidifier for PEMFC vehicles under various operating conditions

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 641-650 ◽  
Author(s):  
Sungho Yun ◽  
Dowon Cha ◽  
Kang Sub Song ◽  
Seong Ho Hong ◽  
Sang Hun Lee ◽  
...  

Abstract PEMFC needs to be maintained at an appropriate temperature and humidity in a rapidly changing environment for automobile applications. In this study, a pseudo-multi-dimensional dynamic model for predicting the heat and mass transfer performance of a plate-and-frame membrane humidifier for PEMFC vehicles is developed. Based on the developed model, the variations in the temperature and relative humidity at the dry air outlet are investigated according to the air flow acceleration. Moreover, the dynamic response is analyzed as a function of the amplitude and period of the sinusoidal air flow rate at actual operating conditions. The effects of heat transfer on the dynamic response are more dominant than those of mass transfer. The settling time of the temperature and relative humidity at the dry air outlet decrease with the increase in air flow acceleration. In addition, the variations in the temperature and relative humidity at the dry air outlet increase with the increases in the amplitude and period of the sinusoidal air flow rate.

2013 ◽  
Vol 34 (4) ◽  
pp. 187-197 ◽  
Author(s):  
Andrzej Kacprzak ◽  
Rafał Kobyłecki ◽  
Zbigniew Bis

Abstract The influences of various operating conditions including cathode inlet air flow rate, electrolyte temperature and fuel particles size on the performance of the direct carbon fuel cell DCFC were presented and discussed in this paper. The experimental results indicated that the cell performance was enhanced with increases of the cathode inlet gas flow rate and cell temperature. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) was used as electrolyte and the biochar of apple tree origin carbonized at 873 K was used as fuel. Low melting temperature of the electrolyte and its good ionic conductivity enabled to operate the DCFC at medium temperatures of 723-773 K. The highest current density (601 A m−2) was obtained for temperature 773 K and air flow rate 8.3×106 m3s−1. Itwas shown that too low or too high air flow rates negatively affect the cell performance. The results also indicated that the operation of the DCFC could be improved by proper selection of the fuel particle size.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 73 ◽  
Author(s):  
Wei He ◽  
Pengkun Yu ◽  
Zhongting Hu ◽  
Song Lv ◽  
Minghui Qin ◽  
...  

Found in some specific scenarios, drinking water is hard for people to get, such as during expeditions and scientific investigations. First, a novel water generator with only two thermoelectric coolers (Model A) is designed for extracting water from atmospheric vapor and then experimentally studied under a small inlet air flow rate. The impact of operating conditions on surface temperatures of cold/hot sides and water yield are investigated, including the air flow rate and humidity. Alternately, to determine the super performance of Model A, a comparative experiment between Model A and a reference model (Model B) is carried out. The results suggest that both the cold/hot temperature and water yield in Model A increases with the humidity and air flow rate rising. Seen in comparisons of Model A and Model B, it is found that, at an air humidity of 90% and air flow rate of 30 m3/h, the total water yield was increased by 43.4% and the corresponding value reached the maximum increment of 66.7% at an air humidity of 60% and air flow rate of 30 m3/h. These features demonstrate the advantage of Model A especially in low air humidity compared to Model B.


Author(s):  
Gary A. Anderson ◽  
Sarmila Katuwal ◽  
Anil Kommareddy ◽  
Stephen Gent

A photobioreactor (PBR) was operated for sixteen days producing S. Leopoliensis. The PBR was lit by two LED panels, one on each of the long sides of the PBR. The PBR dimensions were nominally 51mm by 273mm with a height of 319mm (273mm liquid depth). Each LED panel was powered at 14.1W (11.2V and 1.26A). Measurements of ambient temperature, ambient relative humidity, water loss from the PBR, relative humidity of the exhaust gas from the PBR, air flow rate through the PBR, air pressure in the plenum, growth medium temperature, and LED panel temperature were made approximately daily. Measurements show that the growth medium (water) temperature was relatively insensitive to the ambient temperature which varied from 22.7C to 33.6C. The medium temperature ranged from 23.9C (beginning of the test) to 40.6C. The medium temperature mirrored the LED panel temperature staying 2–4C below the LED panel temperature after the first day. The elevated LED panel temperature was likely due to the inefficiency of the LED lights and the fact that much of the light passing through the reactor volume was incident on the LED panel on the opposite side of the reactor. The panels are black in color and absorbed a significant portion of the light passing through the reactor volume. The air flow rate through the PBR ranged from 1.33×10−5m3/s to 1.67×10−5m3/s. The parallel between panel temperature and PBR medium temperature indicate that the amount of air moving through the PBR was insufficient to affect the medium temperature significantly. The heat loss from the PBR to the ambient environment was also small likely due to the small area available to heat loss to the environment when the PBR walls with the LED panels are excluded. The LED panels covered nominally 88% of the PBR reactor volume area. The measured data and measurements of light intensity passing through the two short walls of the panel will be used to estimate heat loss parameters of the PBR. The exhaust air from the PBR varied from 42.6% to 99.1% with the higher measurements occurring days 6–11. Estimates of the energy stored in the algal biomass are also evaluated in the analysis.


2019 ◽  
Author(s):  
Engkos Achmad Kosasih ◽  
Dwiki Prasetyo ◽  
Amudi Tua Siahaan ◽  
Ardiyansyah Yatim ◽  
Agus Sunjarianto Pamitran

Author(s):  
Marek Kalenik

Abstract: Investigations of hydraulic operating conditions of air lift pump with three types of air-water mixers. The paper presents the analysis of results of the investigations concerning the influence of various constructive solutions of the air-water mixers on hydraulic operating conditions of the air lift pump. The scope of the investigations encompassed the determination of characteristics of delivery head and delivery rate for three types of air-water mixers applied in the constructed air lift pump. Using the obtained results, the efficiency of the three types of air-water mixers applied in this air lift pump was determined. The analysis was carried out and there was checked whether the improved analytical Stenning-Martin model can be used to design air lift pumps with the air-water mixers of these types. The highest capacity in the water transport was reached by the air lift pump with the 1st type air-water mixer, the lowest one – with the 3rd type air-water mixer. The water flow in the air lift pump increases along with the rise in the air flow. The lower are the hydraulic losses generated during flow of the air flux by the air-water mixer, the higher is the air lift pump capacity. Along with the rise in the water delivery head, the capacity of the air lift pump decreases. The highest efficiency is reached by the air lift pump with the 1st type air-water mixer, the lowest – with the 3st type air-water mixer. The efficiency of the air lift pump for the three investigated types of air-water mixers decreases along with the rise in air flow rate and water delivery head. The values of submergence ratio (h/L) of the delivery pipe, calculated with the use of the improved analytical Stenning-Martin model, coincide quite well with the values of h/L determined from the measurements.


Metrologiya ◽  
2021 ◽  
pp. 4-30
Author(s):  
V. I. Chesnokov

In the development of the previously obtained results a more accurate estimate of the methodological error in reproducing the volumetric air flow rate by reference critical nozzle is given, associated with the choice of the gas flow model and due to taking into account the initial kinetic energy of the flow at the nozzle inlet. Based on improved flow model an analytical evaluation of the methodological error in reproducing the volumetric air flow rate by reference critical nozzle, which is due to a change in the humidity of the working air, has been carried out. It is shown that the methodological error in reproducing the volumetric air flow rate by reference critical nozzle, associated with a change in the air humidity, as well as the analogies methodical error caused by the existence of the initial kinetic energy of the flow, must be taken part in accuracy characteristics at the real operating conditions of the standard volumetric air flow rate using critical nozzles.


2021 ◽  
Vol 22 (1) ◽  
pp. 009-017
Author(s):  
Mohamad Rangga Sururi ◽  
Mayang Afi Fadiyah ◽  
Siti Ainun Saleh ◽  
Mila Dirgawati

ABSTRACT Leachate has complex characteristics, and it is commonly processed biologically in the Leachate Treatment Plant (IPL) in Indonesia. However, as the landfill ages, the leachate becomes less biodegradable. An appropriate technique is needed to treat leachate at IPL, and one of the promising methods is advanced oxidation with O3/H2O2. This study examined the effect of air flow rate on the concentration of residual ozone (KSO) and its efficiency to remove organic compounds using the O3/H2O2 process. Leachate samples were collected as grab samples from TPA Sarimukti Bandung. As much as 1 L of leachate samples were placed in an ozone contactor equipped with a filter disc with a pore size of 100-160 µm. The dose of H2O2 was continuously added to 1.197 g/L. Compressor was used to provide airflow with variations of 2, 3, and 4 L/min. Dissolved Oxygen (DO) was measured to determine the concentration of residual ozone (KSO) and validated by examining KSO measurements with the Indigo colorimetric method. A strong relationship between KSO and DO (R2 = 0.99) was observed at an airflow rate of 4 L/min. The highest ozone mass transfer coefficient (KLa,O3) was recorded at a 4 L/minute flow rate with 0.0022 min-1 at 27 °C.  The best removal efficiency has occurred at the fastest air flow rate (4 L/min) with COD, and UV254 removal was 88.89% and 14.87%, respectively. Keywords: DO, flow variation, KSO, leachate, O3/H2O2, organic, mass transfer   ABSTRAK Karakteristik lindi sangatlah kompleks dan di Indonesia, Instalasi Pengolahan Lindi (IPL) pada umumnya menggunakan sistem pengolahan biologis. Namun demikian, seiring dengan pertambahan umur urugan sampah, lindi semakin tidak biodegradable. Teknik pengolahan tepat diperlukan untuk mengolah lindi di IPL. Salah satu teknik yang sering digunakan adalah oksidasi lanjut dengan O3/H2O2 dengan mentransferkan gas ozon ke dalam air lindi yang diukur sebagai Konsentrasi Sisa Ozon (KSO) dan menambahkan H2O2 untuk meningkatkan pembentukan OH? di dalam air.  Penelitian ini bertujuan untuk mengetahui pengaruh laju aliran udara terhadap KSO serta pengaruhnya terhadap efisiensi penyisihan senyawa organik pada proses O3/H2O2. Sampel lindi diambil secara grab sampling dari TPA Sarimukti Bandung. Sebanyak 1 L sampel ditempatkan pada kontaktor ozon yang dilengkapi filter disc dengan pori berukuran 100-160µm. Dosis H2O2 yang diberikan tetap sebesar 1,197 g/L. Udara dialirkan dengan air compressor dengan variasi debit udara 2, 3, dan 4 L/menit. Pada penelitian ini, pengukuran Dissolved Oxygen (DO) digunakan sebagai pendekatan untuk mengukur KSO. Validasi dilakukan dengan meneliti hubungan antara KSO dan DO dan pengukuran KSO dilakukan dengan metode indigo colorimetric method.  Hasil penelitian menunjukkan KSO dan DO memiliki hubungan yang kuat (R2 = 0,99) pada variasi aliran udara 4 L/menit. Laju aliran udara tercepat terjadi ketika nilai koefisien transfer masa ozon (KLa,O3) mencapai nilai tertinggi (0,0022 menit-1) pada suhu 27 oC. Hasil penelitian membuktikan efisiensi penyisihan COD (88,89%) dan UV254 (14,87%) tertinggi terjadi pada laju aliran udara tercepat selama 180 menit. Kata kunci: DO, aliran udara KSO, lindi, O3/H2O2, organik, transfer masa


1990 ◽  
Vol 17 (2) ◽  
pp. 243-251
Author(s):  
David W. Machina ◽  
Jatinder K. Bewtra

The use of bottom or surface fluid velocity within air-agitated circular and rectangular vessels has been studied as a possible design parameter to achieve a specified scale of agitation. Experimental data are presented in terms of five dimensionless numbers involving the fluid velocity, the depth of fluid in the vessel, the elevation of the diffuser above the vessel floor, the air flow rate, and the compressor power required. Design equations are obtained for a total of 506 physical observations with a ring diffuser around the perimeter of a circular vessel, a pipe diffuser at the centre of a circular vessel, and a line diffuser at the centre line or end wall of a rectangular vessel. The applicable range of variables for each equation is provided. It is shown that both bottom and surface velocities increase with an increase in air flow rate or compressor power requirement for a specified fluid depth. For a constant air flow rate and fluid depth, the surface velocity always exceeded the bottom velocity. The surface and bottom velocities are related to operating conditions in different water and wastewater treatment units in which a specified degree of uniformity of the vessel contents has to be maintained in order to keep a specified particle in suspension. The sensitivity analysis of the model revealed that the fluid depth was the most important design parameter in controlling the velocities within air-agitated vessels. Key words: bottom velocity, surface velocity, velocity gradient, degree of uniformity, air-agitated rectangular vessels, air-agitated circular vessels.


Sign in / Sign up

Export Citation Format

Share Document