Conductive and Edge Retaining Embedding Compounds: Influence of Graphite Content in Compounds on Specimen’s SEM and EBSD Performance

2021 ◽  
Vol 58 (5) ◽  
pp. 236-263
Author(s):  
H. Rojacz ◽  
M. Premauer ◽  
A. Nevosad

Abstract Since marginal sharpness is often an issue in metallographic samples preparation, various mounting compounds are commercially available which address these issues. Nevertheless, the conductivity of such products is not sufficient for electron backscatter diffraction measurements (EBSD) and products which are electrically conductive often result in a lack of marginal sharpness. Therefore, this study is focussed on the modification of commercially available embedding compounds (epoxy based and phenolic based hot embedding compounds) with graphite to increase their electrical conductivity. To verify the applicability of the modified embedding compounds, the austenitic steel grade 1.4301 was chosen for investigation via scanning electron microscopy and EBSD. Results indicate a good performance during SEM-investigations of the epoxy-based resins, even at 0 wt.-% graphite contents, whereas the phenolic resin-based embedding compound is only applicable for SEM-investigation > wt.-5 % of graphite. Best performance at EBSD measurements were achieved with phenolic resin based hot mounting compounds with glass fibres and an addition > 10 wt.-% graphite.

2014 ◽  
Vol 782 ◽  
pp. 594-597
Author(s):  
Agnieszka Kochmańska ◽  
Paweł Kochmański

Nickel superalloy was coated by aluminide coatings by the slurry method. The slurry as active mixture containing aluminium and silicon powders, an activator and a binder. The coating were obtained by annealed in argon atmosphere. The structure of these coatings is two zonal and depends on time and temperature of producing. The phase composition was determined using following techniques: scanning electron microscopy (SEM) equipped with Xray microanalysis (EDS) combined with electron backscatter diffraction (EBSD) and Xray diffraction (XRD).


Author(s):  
C. Stallybrass ◽  
A. Völling ◽  
H. Meuser ◽  
F. Grimpe

In recent years, large-diameter pipe producers around the world have witnessed a growing interest to develop gas fields in arctic environments in order to fulfill the energy demand. High-strength linepipe grades are attractive for economic reasons, because they offer the benefit of a reduced wall thickness at a given operating pressure. Excellent low-temperature toughness of the material is essential under these conditions. Modern high-strength heavy plates used in the production of UOE pipes are produced by thermomechanical rolling followed by accelerated cooling (TMCP). The combination of high strength and high toughness of these steels is a result of the bainitic microstructure and is strongly influenced by the processing parameters. For this reason, the relationship between rolling and cooling parameters of heavy plate production, the low-temperature toughness and the microstructure is at the center of attention of the development efforts at Salzgitter Mannesmann Forschung (SZMF) in collaboration Salzgitter Mannesmann Grobblech (SMGB). It has been shown previously that a variation of the processing parameters has a direct influence on the microstructure and correlates with mechanical properties that are accessible via small-scale tests. Modern characterization methods such as scanning electron microscopy in combination with electron backscatter diffraction have broadened our understanding of the underlying mechanisms and have helped to define processing conditions for the production of heavy plates with optimized low-temperature toughness in small scale tests. Within the present paper, the results of a recent laboratory investigation of the effect of a systematic variation of rolling parameters on the microstructure and low-temperature toughness of as-rolled and pre-strained Charpy specimens are discussed. In these trials, final rolling temperatures above the onset of the ferrite-austenite transformation and cooling stop temperatures above the martensite start temperature were selected. The microstructure of the plates was investigated by scanning electron microscopy and electron backscatter diffraction. In a series of Charpy tests in a specific temperature range, it was found that plate material in the as-rolled condition is not strongly sensitive to variations of the selected processing parameters, whereas pre-straining the Charpy specimens made it possible to assess the potential of individual processing concepts particularly with regard to low-temperature toughness. In addition to Charpy testing, the toughness was also quantified via instrumented drop-weight tear (DWT) testing. By comparing total energy values from regular pressed-notch DWT-test specimens to J-integral values determined in drop-weight testing of pre-fatigued DWT-test specimens, the impact of variations of specimen type on material tearing resistance is shown.


2006 ◽  
Vol 15-17 ◽  
pp. 792-797 ◽  
Author(s):  
M.A.E. Jepson ◽  
C.L. Verona ◽  
R.L. Higginson

including, external oxide layers, internal grain boundary oxidation structures as well as many other forms of internal oxidation. During the present study, needle like grains of hematite have been observed within the top layers of a number of external oxide scales formed during simulated reheat of 316L stainless steel. It is believed that these needles are caused by the decomposition of an iron rich spinel (approximated to magnetite) along a preferred crystal direction within the spinel grains. The needles have been studied using optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD).


2008 ◽  
Vol 23 (7) ◽  
pp. 1877-1881 ◽  
Author(s):  
Ying-Ta Chiu ◽  
Kwang-Lung Lin ◽  
Yi-Shao Lai

Microstructural evolution occurred in 5Sn–95Pb/63Sn–37Pb composite flip-chip solder bump during electromigration. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) observations for 5Sn–95Pb/63Sn–37Pb composite flip-chip solder joints subjected to 5 kA/cm2 current stressing at 150 °C revealed a gradual orientation transformation of Pb grains from random textures toward (101) grains. We proposed that the combination of reducing the surface energy of Pb grain boundaries and resistance of the entire polycrystalline system are the driving force for the orientation transformation of Pb grains during an electromigration test.


Sign in / Sign up

Export Citation Format

Share Document