The effect of pressure variations on the formation of gas inclusions in the rotational molding process
Abstract The major disadvantage of rotational molding is the cycle time, which is very long compared to other plastic processing methods. A major percentage of the cycle time besides heating and cooling results from the time necessary to remove gas inclusions from the polymer melt, which are trapped while sintering the polymer powder. In this work the formation of gas inclusions is investigated by conducting a cycle time variation on a uniaxial rotational molding machine. The influence of low pressure during melting on the formation of inclusions is investigated by examining sintering experiments with a pressure variation during the melting of the polymer. Sintering experiments are conducted with different melt residence times to investigate the mechanisms of gas inclusion removal. By comparing the time to reach a pore-free polymeric melt, the cycle time reduction potential under low-pressure application while melting the polymeric powder is estimated.