scholarly journals Effect of blending procedures and reactive compatibilizers on the properties of biodegradable poly(butylene adipate-co-terephthalate)/poly(lactic acid) blends

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dandan Wu ◽  
Anping Huang ◽  
Jie Fan ◽  
Renwei Xu ◽  
Peng Liu ◽  
...  

AbstractThe effect of Joncryl ADR®-4368 (abbreviated ADR) and dicumyl peroxide (DCP) on poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) (PLA) blend was investigated. Two different blending procedures were adopted: (1) one-step blending of all components for 8 min; (2) premixing of PBAT and ADR (or DCP) for 4 min followed by addition of PLA blending for 4 min. ADR and DCP were effective compatibilizers for the PBAT/PLA blend by one-step blending which were confirmed by improving the phase interface between PBAT and PLA, decreasing the dispersed phase size, increasing the elasticity, viscosity and tensile strength. Moreover, the addition of ADR into PBAT/PLA blend by two-step blending was more efficient than the one-step blending based on refined morphology and further increased tensile properties. The two-step blending was beneficial to produce a larger amount of PBAT-graft-PLA (PBAT-g-PLA) copolymers at the phase interface. However, DCP was added to the PBAT/PLA blend by the two-step blending which showed lower properties than one-step blending. DCP triggered free branching reactions in a fast way. Based on the character of compatibilizers, choosing properly blending procedures can enlarge the tensile properties. These results would be interesting for industrial polymer materials, and may be importance to the wider practical application of PBAT/PLA blends.

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 793-810
Author(s):  
Xipo Zhao ◽  
Dianfeng Zhang ◽  
Songting Yu ◽  
Hongyu Zhou ◽  
Shaoxian Peng

Abstract Poly(butylene succinate) (PBS) has good impact strength and high elongation at break. It is used to toughen biodegradable poly(lactic acid) (PLA) materials because it can considerably improve the toughness of PLA without changing the biodegradability of the materials. Therefore, this approach has become a hotspot in the field of biodegradable materials. A review of the physical and chemical modification methods that are applied to improve the performance of PLA/PBS blends based on recent studies is presented in this article. The improvement effect of PLA/PBS blends and the addition of some common fillers on the physical properties and crystallization properties of blends in the physical modification method are summarized briefly. The compatibilizing effects of nanofillers and compatibilizing agents necessary to improve the compatibility and toughness of PLA/PBS blends are described in detail. The chemical modification method involving the addition of reactive polymers and low-molecular-weight compounds to form cross-linked/branched structures at the phase interface during in situ reactions was introduced clearly. The addition of reactive compatibilizing components is an effective strategy to improve the compatibility between PLA and PBS components and further improve the mechanical properties and processing properties of the materials. It has high research value and wide application prospects in the modification of PLA. In addition, the degradation performance of PLA/PBS blends and the methods to improve the degradation performance were briefly summarized, and the development direction of PLA/PBS blends biodegradation performance research was prospected.


2021 ◽  
Vol 25 ◽  
pp. 100730
Author(s):  
Hui Ding ◽  
Weijun Yang ◽  
Wenhao Yu ◽  
Tianxi Liu ◽  
Haigang Wang ◽  
...  

2017 ◽  
Vol 737 ◽  
pp. 269-274
Author(s):  
Sirirat Wacharawichanant ◽  
Chaninthon Ounyai ◽  
Ployvaree Rassamee

The effects of four types of organoclay on morphology and mechanical properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) blends were investigated. The ratio of PLA and PEC was 80/20 by weight and the organoclay content was 5 phr. The morphology analysis showed that the addition of all oganocaly types could improve the miscibility of PLA and PEC blends due to the decreased of the domain sizes of PEC dispersed phase in the polymer matrix. The tensile properties showed Young’s modulus of the PLA/PEC blends was improved after adding clay treated surface with 25-30 wt% trimethyl stearyl ammonium.


LWT ◽  
2021 ◽  
pp. 112356
Author(s):  
Phatthranit Klinmalai ◽  
Atcharawan Srisa ◽  
Yeyen Laorenza ◽  
Wattinee Katekhong ◽  
Nathdanai Harnkarnsujarit

2018 ◽  
Vol 381 (1) ◽  
pp. 1800133 ◽  
Author(s):  
Elaine C. Lopes Pereira ◽  
Bluma G. Soares ◽  
Rayan B. Jesus ◽  
Alex S. Sirqueira

2021 ◽  
pp. 096739112110576
Author(s):  
Ying Zhou ◽  
Can Chen ◽  
Lan Xie ◽  
Xiaolang Chen ◽  
Guangqiang Xiao ◽  
...  

In this work, novel plasticizing biodegradable poly (lactic acid) (PLA) composites were prepared by melt blending of jute and tung oil anhydride (TOA), and the physical and mechanical properties of PLA/jute/TOA composites were tested and characterized. The impact strength of PLA/jute/TOA composites significantly increases with increasing the content of TOA. The SEM images of fracture surface of PLA/jute/TOA composites become rough after the incorporation of TOA. In addition, TOA changes the crystallization temperature and decomposition process of PLA/jute/TOA composites. With increasing the amount of TOA, the value of storage modulus (E′) of PLA/jute/TOA composites gradually increases. The complex viscosity (η*) values for all samples reduce obviously with increasing the frequency, which means that the pure PLA and PLA/jute/TOA composites is typical pseudoplastic fluid. This is attributed to the formation of crosslinking, which restricts the deformation of the composites.


Sign in / Sign up

Export Citation Format

Share Document