Studying the electrical conductivity and mechanical properties of irradiated natural rubber latex/magnetite nanocomposite

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Faten Ismail Abou El Fadl ◽  
Maysa A. Mohamed ◽  
Magida Mamdouh Mahmoud ◽  
Sayeda M. Ibrahim

Abstract Nanocomposites have received voluminous interest due to the combination of unique properties of organic and inorganic component in one material. In this class, magnetic polymer nanocomposites are of particular interest because of the combination of excellent magnetic properties, stability, and good biocompatibility. This paper reports the preparation and characterization of nanocomposites films based on natural rubber in latex state (NRL) loaded with different concentrations of semiconducting magnetite nanoparticles (Fe3O4) (MNPs) (5, 10, 15, 20, and 30%). NRL (100%) and NRL/Fe3O4 nanocomposites were prepared by solution casting technique then, exposed to various irradiation doses (50, 70, 100 kGy).The nanocomposite’s morphological, and physical properties were investigated through various spectroscopic techniques such as Fourier-transformed infrared, X-ray diffraction, scanning electron, and transmission electron microscopies. The mechanical properties, including the tensile strength and elongation at break percentage (E b %) of the nanocomposites were also studied and compared with the 100% NRL films. Based on the results obtained from the mechanical study, it is found that the NRL/20% Fe3O4 nanocomposite film exhibited the highest tensile strength at 100 kGy. On the other hand, based on the conductivity study, it is found that, NRL/Fe3O4 nanocomposite with 10% magnetite exhibit the highest conductivity as the content of magnetite plays an important and effective role based on the high and homogeneous dispersity.

2013 ◽  
Vol 844 ◽  
pp. 190-193 ◽  
Author(s):  
Pongsathorn Issarayungyuen ◽  
Wiwat Pichayakorn ◽  
Thawatchai Phaechamud

The highly glycerin-loaded natural rubber (NR) films were fabricated by casting technique with different solvents including dichloromethane (DCM), diethyl ether and tetrahydrofuran (THF) with an addition of 75 phr glycerin. Their mechanical properties, wettability and topography were determined. The highly glycerin-loaded NR films exhibited the continuous porous structure which their tensile strength values decreased whereas their wettability was enhanced. Pore size of the glycerin-loaded NR films prepared by using DCM as a solvent was greatly larger than those of the systems prepared by using diethyl ether and THF, respectively. Some active compounds might be loaded into these modified porous structures of NR films and applied for controlled drug delivery systems.


Author(s):  
Mahiratul Husna Mustaffar ◽  
◽  
Aliff Hisyam A. Razak ◽  

Disposal latex and synthetic rubber gloves is troublesome such that disposal via incineration and land fill may release poisonous gasses and contaminate soil and water, respectively. As solution to latex and synthetic rubber, biodegradable glove is extensively studied. A bio-based filler is extracted from food waste and blended into natural rubber latex (NRL) as a composite NRL. The effect of biodegradability of composite NRL was studied by varying the loading of bio-based filler in a form of starch dispersion and blended into NRL mixture. Herein some amount of starch can be extracted from cassava peel to be incorporated in NRL for a sustainable and yet biodegradable glove. Previous work on incorporation of cassava-peel filler in NRL has shown a biodegradability without compromising the pristine strength of NRL film at 50% loading starch. In this project, tensile strength and weight loss of prepared composite NRL films were optimised via Taguchi and Response Surface Method (RSM) by means of Design Expert software by varying starch/filler loading, curing temperature and curing drying duration. Due to inadequate data, the optimisation from that previous prepared composite NRL was compared with similar work which utilising NRL and bio-based filler. For Pulungan (2020) study, it can be concluded that the tensile strength of cassava peel starch biodegradable film has the best condition at 50°C to 60°C at approximately 5.5 hours. Elongation optimum conditions shows contrast value of temperature and time. Meanwhile, for Wendy (2020) study, it shows the best percentage loading of cassava-peel starch is at 20% to achieve high stress and strain at break. The optimised mechanical properties via Taguchi and RSM are rather different and hence validation on mechanical properties at above mentioned conditions need to be performed experimentally.


2019 ◽  
Vol 92 (3) ◽  
pp. 558-577
Author(s):  
Nuchnapa Tangboriboon ◽  
Rujika Takkire ◽  
Watchara Sangwan ◽  
Sairung Changkhamchom ◽  
Anuvat Sirivat

ABSTRACT Raw hen eggshell powder, a calcium carbonate source, was used as a biofiller in the natural rubber latex compound and latex glove film formation via dipping process. The powder was anticipated to improve the physical (smoothness and thickness of film) and mechanical properties (tensile strength and elongation at break) of latex film and to reduce the extractable protein content on film surface. Eggshell powder ground by a rapid mill was fine particles of approximately 37.48 μm in diameter, suitable for homogeneous and compatible addition into the natural rubber latex compound. Dipping hand mold into the natural rubber latex compound with 50 wt% eggshell added was the best formula to obtain a smooth, clear, thin film surface, with the tensile strength of 23.24 ± 0.745 MPa and the highest elongation at break of 723.99 ± 14.60%, along with a low protein content, a dense film without water leakage, and with a good contact angle. The natural rubber latex glove film possessed good physical-mechanical properties and a low protein content as the results of the raw eggshell powder added as a biofiller.


2014 ◽  
Vol 87 (2) ◽  
pp. 250-263 ◽  
Author(s):  
Sasidharan Krishnan ◽  
Rosamma Alex ◽  
Thomas Kurian

ABSTRACT A process for production of carbon black/silica/nanoclay ternary filler masterbatch from fresh natural rubber (NR) latex was standardized. The fillers, nanoclay, carbon black, and silica were incorporated in fresh NR latex by a modified coagulation process. The latex, mixed with filler dispersions, coagulated immediately on addition of acids. The coagulum containing fillers was dried at 70 °C in an air oven to get the latex filler masterbatch, which was further processed in the conventional way. The masterbatch compounds containing only silica/carbon black showed a higher level of vulcanization as compared with the corresponding dry mixes. The mechanical properties, such as tensile strength, modulus, tear strength, abrasion resistance, and hardness, increased with the proportion of nanoclay in the mixes up to 5 phr, and with a greater amount, the change was only marginal. Lower tan delta values were observed for all of the masterbatches containing nanoclay in the ranges of 3 to 10 phr compared with the control dry mix containing 25/25 carbon black/silica. The improvement in mechanical properties and dynamic properties shown by the masterbatches over the conventional mill-mixed compounds was attributed to factors related to filler dispersion, as evidenced from the data from dispersion analyzer images, X-ray diffractograms, and a higher level of vulcanization.


1951 ◽  
Vol 24 (3) ◽  
pp. 649-661 ◽  
Author(s):  
Jean Le Bras ◽  
Ivan Piccini

Abstract The direct utilization of latex has up to the present time been limited to a relatively small number of applications because of lack of knowledge of how to communicate to articles sufficient hardness, modulus, resistance to tearing, and resistance to abrasion. It is possible to obtain such properties by combining the molding of latex (thermosensitized by the action of trypsin) with the addition of partially condensed resins. Numerous types of resins can be utilized, but the best results have been obtained by resorcinol-formaldehyde resins. The mechanical properties of vulcanizates thus prepared are extremely high—for example, the tensile strength may reach 7500 pounds per square inch (with an elongation of 700 per cent), and the resistance to tearing 900 pounds per inch. Operating conditions that must be observed for the formation of the resin are described in detail, as well as the influence on the properties of vulcanizates of different factors: length of condensation of the resin, conditions of vulcanization, proportion of catalyst, molecular ratio of constituents, conditions of drying, etc. A new way is opened for obtaining vulcanizates of natural rubber of outstanding mechanical propoerties.


2015 ◽  
Vol 1123 ◽  
pp. 387-390 ◽  
Author(s):  
Hamidah Harahap ◽  
Adrian Hartanto ◽  
Kelvin Hadinatan ◽  
Indra Surya ◽  
Baharin Azahari

The effect of aging on mechanical properties of natural rubber latex (NRL) products filled with alkanolamide-modified cassava peel waste powder (CPWP) was studied. CPWP used as fillers was prepared by milling and sieving it until the size of 100 mesh. The powder then was dispersed in a suspension containing water and alkanolamide in order to modify the prepared powders. The dispersion system of 10 pphr (part per hundred rubber) then was added into NRL matrix followed by pre-vulcanization at 70°C for 10 minutes. The NRL compound then were casted into films by coagulant dipping method then dried at 120°C for 10 minutes. Afterwards, the films were allowed to cool at room temperature for 24 hours before being aged in a circulation of hot air for 24 hours at 70°C. The properties such as tensile strength, tensile modulus, and elongation at break were evaluated between the aged samples and the unaged samples. From this study, it showed that the aged films have increasing value of tensile strength and tensile modulus while the value of elongation at break decreases. These datas are supported by Scanning Electron Microscope (SEM) micrographs which indicate that the change of morphology in NRL films occurs before and after aging.


2020 ◽  
Vol 6 (1) ◽  
pp. 20-25
Author(s):  
N. A. H. Jailudin ◽  
Khairatun Najwa Mohd Amin

Cellulose nanocrystal (CNC) was extracted from filter paper and isolated via sulphuric acid hydrolysis. This CNC was used as reinforcing elements in natural rubber latex (NRL) along with the cross-linking agents to prepare nanocomposite films. The effect of CNC loading on the mechanical properties, functional group presence and the glass transition temperature (Tg) of CNC/NRL nanocomposite at curing temperature of 70°C and 80°C were studied, respectively. CNC size and dimension was characterized using transmission electron microscope (TEM). Significant improvement of Young’s modulus was observed as a result of the addition of CNC loading at 3 wt.% and the Tg only showed a small increase upon the addition of CNC. The best nanocomposite was found at a curing temperature of 80°C with a tensile strength of 144% improvement.


2017 ◽  
Vol 751 ◽  
pp. 308-313 ◽  
Author(s):  
Tarakol Hongkeab ◽  
Peerapan Dittanet

Polystyrene-grafted natural rubber (PS-GNR) at various graft levels was evaluated to improve mechanical properties of natural rubber (NR). PS-GNR was synthesized by emulsion copolymerization at 60°C at different reaction times between 15 and 360 mins to control the grafting levels of PS in the PS-GNR co-polymer. The resultant PS-GNR co-polymers were then blended into NR latex. The vulcanized NR compounds were investigated for the effect of PS grafting percentage in PS-GNR/NR compounds on mechanical properties, including tensile, tear strength and hardness. A core-shell structure was revealed with PS encapsulating the NR core via transmission electron microscopy. The polystyrene grafting percentage was determined to be 12.7%, 17.1%, 22.1% and 23.6% for polymerization times of 15 min, 60min, 120min, and 360 min, respectively. Addition of PS-GNR into NR exhibited biphasic behavior, resulting in a decrease in the tensile strength and tear strength. With further increase in grafting percentage of PS, the tensile strength and tear strength continues to decrease. The rigid chain of PS grafted onto NR surface reduced the elasticity of NR chain resulting in lower tear strength and the tensile strength. Fracture surface revealed a decrease in ductility of material with increasing grafting percentage of PS. On the other hand, modulus and hardness of PS-GNR/NR compounds were found to increase with increasing grafting percentage of PS. The addition of PS-GNR to rubber compound had shown an impact on dynamic behavior. With further increase in grafting percentage of PS in PS-GNR, an enhancement of storage modulus of rubber compound was clearly observed.


2017 ◽  
Vol 5 (4) ◽  
pp. 46-52
Author(s):  
Rismadhani Elita ◽  
Rojiyatul Ikhwani Lubis ◽  
Hamidah Harahap

Leaching process is one of many factors to raise up the mechanical properties of latex products. Studies on the effect of leaching on film natural rubber latex with the filler microcrystalline cellulose from bagasse with alkanolamide using different temperatures and times vulcanization has been done to produce the better mechanical properties such as strenght tensile and elongation at break. Filming of natural rubber latex is done by coagulants dyeing techniques. The study started with the process of pre-vulcanised natural rubber latex at 70 °C with a loading filler by 0 phr, 5 phr, 10 phr and 15 phr and followed by a vulcanization process at a temperature of 100 °C and 150 °C for 10 minutes and 20 minutes. The film result will be have leaching treatment using a solution of water and ammonia 1%. Test results of tensile strength of natural rubber latex film howed that the tensile strength of natural rubber latex film with microcrystalline cellulose as filler and alkanolamides after leaching less than the tensile strength of natural rubber lateks film before leaching


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Sign in / Sign up

Export Citation Format

Share Document