Phytofunctionalized silver nanoparticles: green biomaterial for biomedical and environmental applications

2018 ◽  
Vol 38 (3) ◽  
pp. 127-149 ◽  
Author(s):  
Shaan Bibi Jaffri ◽  
Khuram Shahzad Ahmad

AbstractVariegated physicochemical routes with emerging modifications have been adopted and reported for silver nanoparticle synthesis for centuries. Nano-biotechnology aimed at the synthesis of nanomaterials, including silver nanoparticles, through utilization of biological media has acquired an auspicious role in science for human welfare. Despite recurrent nanoscale researches on physicochemical routes, coeval stages are predominated by greener methods in silver nanoparticle synthesis for the utilization of its inherent toxicity and exceedingly smaller sizes for biological and environmental applications. One of the principles of green routes for silver nanoparticle synthesis is reduction and stabilization via phytochemicals extracted from plants in a one-pot protocol of phytofunctionalization. Plants are preferred for their abundant availability, environmental non-toxicity and economical favorability and chiefly for the ease of aptness, unlike microbial pathways having tedious requirements of cellular culture maintenance conditions. The present work reviewed the most recent milestones set in the selection of types and parts of plants and optimized synthetic conditions employed in the fabrication of silver nanoparticles, in addition to quantitative and qualitative characterization. Furthermore, the use of phytofunctionalized silver nanoparticles for microbial growth inhibition and environmental remediation was also studied. Through the meticulous review of literature, potential applications were highlighted, which can provide researchers with a plethora of avenues for future investigations for remediation of the environment, in terms of both combating pathogenic microbes and environmental detoxification.

RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87128-87133 ◽  
Author(s):  
Tatiana Yu. Sergeeva ◽  
Aida I. Samigullina ◽  
Aidar T. Gubaidullin ◽  
Irek R. Nizameev ◽  
Marsil K. Kadirov ◽  
...  

An amphiphilic resorcinarene with ferrocene groups at the lower rim has been applied as both reductant and stabilizer in the synthesis of colloidal silver nanoparticles.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4180 ◽  
Author(s):  
Qunying Yuan ◽  
Manjula Bomma ◽  
Zhigang Xiao

In this study, the metallothionein gene of Candida albicans (C. albicans) was assembled by polymerase chain reaction (PCR), inserted into pUC19 vector, and further transformed into Escherichia coli (E. coli) DH5α cells. The capacity of these recombinant E. coli DH5α cells to synthesize silver nanoparticles was examined. Our results demonstrated that the expression of C. albicans metallothionein in E. coli promoted the bacterial tolerance to metal ions and increased yield of silver nanoparticle synthesis. The compositional and morphological analysis of the silver nanoparticles revealed that silver nanoparticles synthesized by the engineered E. coli cells are around 20 nm in size, and spherical in shape. Importantly, the silver nanoparticles produced by the engineered cells were more homogeneous in shape and size than those produced by bacteria lack of the C. albicans metallothionein. Our study provided preliminary information for further development of the engineered E. coli as a platform for large-scale production of uniform nanoparticles for various applications in nanotechnology.


Author(s):  
Sruthi Radhakrishnan

Green route for the synthesis of nanoparticles has become more acceptable than the other chemical as well as biological route. In the present study, silver nanoparticle is synthesized using ethanolic extract of Psidium guajava leaves. Further the synthesized silver nanoparticles were characterized by UV-Visible Spec, FT-IR, X-Ray Diffraction FESEM and E-DAX. The results of FT-IR provided evidence of the involvement of phytochemicals present in the leaf extract in the reduction of silver nitrate to silver nanoparticles. XRD confirmed the crystalline structure as well as shape of the synthesized nanoparticle as face-centred cubic. E-DAX profiling helped in determining the presence of elemental silver. The size of the nanoparticle procured by SEM analysis was found to be approximately 30-50 nm in size. Thus, the findings of this study showed that the plant assisted method for silver nanoparticle synthesis is more effective and further application level studies can shed lights on their use in healing of various human ailments.   


Author(s):  
Shyla Marjorie Haqq ◽  
Amit Chattree

  This review is based on the synthesis of silver nanoparticles (AgNPs) using a green approach which is biofabricated from various medicinal plants. AgNPs were prepared from the various parts of the plants such as the flowers, stems, leaves, and fruits. Various physiochemical characterizations were performed using the ultraviolet (UV)-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, transmission electron microscopy, and energy dispersive spectroscopy. AgNPs were also used to inhibit the growth of bacterial pathogens and were found to be effective against both the Gram-positive and Gram-negative bacteria. For the silver to have antimicrobial properties, it must be present in the ionized form. All the forms of silver-containing compounds with the observed antimicrobial properties are in one way or another source of silver ions. Although the antimicrobial properties of silver have been known, it is thought that the silver atoms bind to the thiol groups in enzymes and subsequently leads to the deactivation of enzymes. For the silver to have antimicrobial properties, it must be present in the ionized form. The study suggested that the action of the AgNPs on the microbial cells resulted into cell lysis and DNA damage. AgNPs have proved their candidature as a potential antibacterial against the multidrug-resistant microbes. The biological agents for synthesizing AgNPs cover compounds produced naturally in microbes and plants. Reaction parameters under which the AgNPs were being synthesized hold prominent impact on their size, shape, and application. Silver nanoparticle synthesis and their application are summarized and critically discussed in this review.


2016 ◽  
Vol 3 (2) ◽  
pp. 119-126
Author(s):  
Jyoti Prasad Saikia ◽  
◽  
Bably Khatun ◽  
Bhaskarjyoti Gogoi ◽  
Alak Kumar Buragohain ◽  
...  

2019 ◽  
Vol 7 (9) ◽  
pp. 8070-8076 ◽  
Author(s):  
Sebastian Hietzschold ◽  
Andrew Walter ◽  
Connor Davis ◽  
Aidan A. Taylor ◽  
Lior Sepunaru

Sign in / Sign up

Export Citation Format

Share Document